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Abstract

We characterize an information cliff in the stock market: the supply of information on

aggregate cash flows drops precipitously beyond a one-year horizon, and so does analyst

forecast accuracy. We use a generalized state-space model to explore the implications for

expected cash-flow growth and expected returns. Identifying the state-space dimensionality is

the only necessary step for sharpening the model structure. Once done, the information cliff

has a direct mathematical representation: the expected cash-flow component of the state space

must be non-persistent. Furthermore, the expected market returns only depend on the valuation

wedge between the total market and one-year dividend strip.
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1 Introduction

Understanding financial market participants’ information about the aggregate economy is crucial.

Asset prices reflect their expectations of future macroeconomic conditions, directly influencing

resource allocation and policymaking. Market participants’ expectations depend on the availability

of information and how the information is processed. A large literature examines the latter, often

exploring how biases in information processing distort expectation formation. Instead, we begin

by characterizing the supply of information in this paper, revealing an information cliff—a sharp

decline in available information on economic fundamentals beyond a one-year horizon. We then

show that this critical feature sheds new light on several central objects in a canonical asset pricing

framework and generates broader implications for the dynamics of expected cash flows and returns.

A critical source of information in the stock market is corporate disclosure, particularly the

quarterly guidance firms release with their earnings announcements. We find that 96% of guidance

pertains to performance within the next year.1 Importantly, this information cliff is reflected in the

information content of analysts’ forecasts. Analyst forecasts of aggregate earnings growth for the

upcoming year yield an 𝑅2 of 73% when predicting realized earnings growth, but their accuracy

plummets for subsequent periods. Specifically, the 𝑅2 drops to around 20% when analyst forecasts

for the second (months 13-24) or third year are used to predict earnings growth for the corresponding

periods. The predictive power of long-term growth (LTG) forecasts is similarly weak.

Corporate announcements in the first month of a quarter are more informative for revealing

aggregate economic conditions than those in other months (Guo, 2025; Guo and Wachter, 2025a).

Since the information supplied by firms is predominantly about performance within the next year,

we would expect the wedge between the predictive power of analysts’ next-year forecasts and that of

their forecasts for subsequent years to be most pronounced in the first month of a quarter. Our results

confirm this hypothesis. The alignment between the timing of information supply and predictive

power wedge across the horizon lends further support to the one-year cliff of available information.
1Beyond corporate announcements, we tabulate in the Appendix III the horizons of major professional forecasts of

macroeconomic variables. The majority have horizons within four to six quarters.
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To explore the asset pricing implications of the information cliff, we extend the model in

Lettau and Wachter (2007) by allowing the dynamics of cash flows and risk prices to be driven by

an arbitrary set of latent state variables and shocks.2 The model provides a necessary analytical

structure without imposing restrictive assumptions. Our analysis takes three steps. The first step is

critical for sharpening the model structure: we develop a method to identify the dimensionality of

the state space. Second, we show that once this dimensionality is pinned down, market participants’

information set has a simple mathematical representation, and the information cliff has a direct

implication for the (lack of) persistence of expected cash-flow growth—a key object in the asset

pricing literature. In the last step, we connect the information cliff and expected market return.

To examine the state-space dimensionality, we show that logarithm of dividend strip prices

scaled by realized dividends (“valuation ratios”) are linear functions of the state variables. As

strips across maturities differ in their state-variable loadings, their valuation ratios are linearly

independent combinations of state variables and empirically span the state space. We compute the

valuation ratios of S&P 500 dividend strips and find that the first two principal components account

for 96% of total variance. In addition, when forecasting returns and dividend growth, the best-

performing pairs of valuation ratios perform as well as three or more valuation ratios. Therefore, to

span the dividend valuations, expected returns, and expected dividend growth, a two-dimensional

state space suffices, despite the many economic forces that affect the aggregate stock market.

The two state variables can be rotated to represent, respectively, the conditional expected

return and conditional expected dividend growth rate, and their laws of motion are AR(1) processes.3

While prior studies have assumed such a two-dimensional structure in different contexts (e.g., Lettau

and Wachter, 2007; Binsbergen and Koijen, 2010), they have not tested this assumption. For our

purposes, formally identifying the state-space dimensionality is crucial; otherwise, as will become

clear next, our first theoretical result on the parametric representation of information cliff would

follow directly from an assumed (rather than empirically grounded) two-dimensional state space.

The conditional expectation of dividend growth rate over the next year—one of the two state
2The model does not impose rational expectation. The stochastic discount factor may reflect belief distortions.
3Note that adding more lags in AR processes means having more than two state variables.
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variables—encapsulates all the information that market participants have about future cash flows.

Since it is an AR(1) process, a non-zero autoregressive coefficient would imply that the current

information set contains persistent signals, allowing market participants to forecast growth for the

next two, three, and subsequent years. Thus, the information cliff—market participants do not have

information about growth beyond the next year—implies a zero autoregressive coefficient. This

autoregressive coefficient has been one of the central objects in the asset pricing literature.4

This direct connection between the information cliff and the persistence (autoregressive

coefficient) of expected cash-flow growth rates can be tested, providing further support to the

information cliff. Using analyst forecasts to proxy for cash-flow expectations, we estimate the

autoregressive coefficient of expected cash-flow growth rate and find it to be consistently around

zero across different specifications. For robustness, we also fit a state-space model to dividend data,

using a latent variable to represent the expected growth rate. This approach yields similar results.

After exploring the connection with the information cliff and expected cash-flow growth rate,

we turn to the expected return and derive another set of results from our model: if the expected cash-

flow growth rate has a zero autoregressive coefficient, the expected return is a univariate function of

the slope of valuation term structure; otherwise, the sign of the slope’s return forecasting error aligns

with that of the autoregressive coefficient. Here valuation term structure refers to the collection of

valuation ratios of strips with varying maturities. The market price-dividend ratio (𝑝𝑑) reflects the

overall valuation level, and the slope is given by the wedge between 𝑝𝑑 and the valuation ratio of

one-year dividend strip. When this wedge widens, the term structure steepens: a larger (smaller)

fraction of market value comes from dividends beyond the next year (within the next year).

The return predictive power of the slope is quite intuitive under the information cliff. Since

market participants have limited information on cash flows beyond the very next year, the rise of

valuation of cash flows beyond one year relative to valuation of next-year cash flows is not driven by

improved long-term growth but due to a lower discount rate that benefits the valuation of long-term
4There is a large literature on the dynamics of expected cash-flow growth rate and its asset pricing implications (e.g.,

Bansal and Yaron, 2004; Beeler and Campbell, 2012; Belo, Collin-Dufresne, and Goldstein, 2015; Collin-Dufresne,
Johannes, and Lochstoer, 2016). In an endowment economy, the cash flow is both firms’ payout and aggregate
consumption, but in reality, they differ. Our theoretical and empirical analysis are about on the former.
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cash flows more than that of near-term cash flows. Thus, a steepening of valuation term structure

predicts lower market returns. The slope delivers an in-sample 𝑅2 of 25% and an out-of-sample

𝑅2 of 15% and subsumes the predictive power of 𝑝𝑑. Augmenting the slope with other predictors

from the literature does not improve the performance, in line with our result on the expected return

being a univariate function of the slope.5 Finally, our rolling-window estimation shows that when

the autoregressive coefficient of expected cash-flow growth deviates from zero, its sign aligns with

that of the slope’s return forecasting error, consistent with our model prediction.

Our exponential-affine model based on Lettau and Wachter (2007) implies a linear mapping

from the slope of valuation term structure to the expected return under the information cliff, which

corresponds to the standard predictive regression. To address the concern of nonlinearity, we show

that the slope in a linear regression outperforms machine learning algorithms in (Kelly, Malamud,

and Zhou, 2024) that nonlinearly aggregate a large set of predictors (including the slope itself).

Beyond discount-rate variation, our analytical framework and return predictability results

have a mispricing interpretation. Traditional market timing bets against the overall valuation level,

𝑝𝑑. Our findings indicate that market participants are well informed of the near term but face an

information cliff beyond one year, so mispricing is likely in the long-term cash flows, and the focus

should be on the slope rather than the level of valuation term structure. To time the market is to

reduce exposure when the valuation term structure steepens and increase exposure when it flattens.6

Betting against the slope is betting against exuberance or pessimism about the long term.

Literature. We characterize an information cliff that market participants face, stemming from

the prevailing corporate practice of providing guidance on performance within the next year. In

contrast, prior studies do not discuss information supply but instead focus on distortions in market

participants’ information usage and how to formalize various biases in their long-term expectations,

such as over- or under-reaction (Afrouzi et al., 2023; Bordalo et al., 2024a,b; Enke and Graeber,
5The slope outperforms other predictors, including those summarized in Goyal and Welch (2007) and from more

recent papers, across evaluation metrics, such as Hodrick (1992) adjustment for standard errors and out-of-sample tests
(e.g., encompassing (ENC) and Clark-West (CW) tests).

6Its Sharpe ratio of 0.58 is 55% higher than that of buy-and-hold strategy (Campbell and Thompson, 2008).
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2023; Wang, 2020), false pattern recognition (Barberis et al., 1998; Guo and Wachter, 2025b),

optimism (Cassella et al., 2023), bounded rationality (De Silva and Thesmar, 2024), and failure to

distinguish old versus new information (Guo, 2025; Guo and Wachter, 2025a).

We do not aim to model or pin down a specific bias in how agents utilize information like

those listed above; instead, we emphasize the supply of information and focus on a sharp decline

of information at the one-year horizon and its the asset pricing implications.7 Leveraging the

analytical framework of Lettau and Wachter (2007) and our novel method of identifying the state-

space dimensionality, we provide findings that have not been previously discussed, such as the lack

of persistence of expected annual growth rate of aggregate cash flows and the connection between

the expected market return and the slope of the valuation term structure. This focus on a specific

cutoff horizon (one year) and our asset pricing results on the aggregate market distinguish our paper

from the existing literature that study how specific belief biases distort agents’ long-term versus

short-term expectations of firm-level growth (e.g., Da and Warachka, 2011; Bordalo et al., 2019;

Cassella et al., 2023; De Silva and Thesmar, 2024; Guo and Wachter, 2025a).

Given the information cliff at the one-year horizon, we characterize how it affects the in-

formation content of analyst forecasts, contributing to a growing body of research on analyzing

subjective expectations based on survey data (see reviews by Adam and Nagel, 2023; D’Acunto and

Weber, 2024).8 Our paper is particularly related to studies on how distortions in long-term forecasts

lead to mispricing and return predictability (e.g., La Porta, 1996; Nagel and Xu, 2022; Bordalo

et al., 2024b). Our unique focus on the one-year information cliff leads to the discovery of the slope

of valuation term structure as a powerful return predictor that outperforms other predictors across

various metrics. These results contribute to the literature on return predictability.9

7We do not study short-termism, a related topic in the accounting literature on managerial incentives, disclosure,
and firms’ performance (e.g., Bushee, 2001; Bhojraj and Libby, 2005; Call et al., 2014; Brochet et al., 2015).

8This literature includes studies on expectations of firm-level performance (e.g., La Porta, 1996; Dechow and Sloan,
1997; Copeland et al., 2004; Da and Warachka, 2011; Piotroski and So, 2012; Bordalo et al., 2019; Bouchaud et al.,
2019; Binsbergen et al., 2022; Guo and Wachter, 2025a), aggregate market returns and cash flows (e.g., Chen et al.,
2013; De La O and Myers, 2021; Gao and Martin, 2021; Hillenbrand and McCarthy, 2021; Nagel and Xu, 2022;
Charles et al., 2023; Schmidt-Engelbertz and Vasudevan, 2023; De la O and Myers, 2024), and expectations in bond
markets and the macroeconomy (e.g., Amromin and Sharpe, 2014; Coibion and Gorodnichenko, 2015; Piazzesi et al.,
2015; Crump et al., 2016; Bordalo et al., 2020; Giglio et al., 2021; Pang, 2023; Farmer et al., forthcoming).

9There is a vast and growing literature on return predictability (e.g., Fama and French, 1988; Campbell and Shiller,
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The timing of information supply plays an important role in our findings: while analyst

forecasts predict next-year earnings better than subsequent-year earnings, this difference is most

pronounced in the first month of a quarter when firms supply more information about the aggregate

economy (Guo, 2025; Guo and Wachter, 2025a). Our focus on the impact of information-supply

timing on market participants’ cash-flow expectations differs sharply from prior work, which

predominantly examines its effect on returns. This literature has grown significantly since Savor and

Wilson (2013) and Lucca and Moench (2015) established that stock market returns are significantly

higher on announcement days than non-announcement days (with theoretical explanations provided

by, e.g., Ai and Bansal (2018) and Wachter and Zhu (2022)). Further studies have shown that

information-supply timing affects equity-market anomalies (Engelberg et al., 2018), influences the

performance of CAPM and factor models (Savor and Wilson, 2014; Gilbert et al., 2018), and drives

cross-firm spillover effects (Savor and Wilson, 2016; Ben-Rephael et al., 2021).

2 Direct Evidence on the Information Cliff

The overall data structure. This paper draws on three main categories of data, primarily from

1988 to 2019, to document the information cliff in agents’ cash-flow expectations, embed it in a state-

space model, identify the state-space dimensionality, and explore the asset pricing implications.

First, to provide direct, model-free evidence of the information cliff in Section 2, we use data on

corporate guidance of earnings and sales growth from IBES Guidance; subjective expectations

(analyst forecasts) and realized earnings growth rates from IBES Global Aggregates (IGA); and

self-aggregated long-term growth (LTG) forecasts from firm-level IBES Unadjusted Summary

Files. Second, to construct our state variable proxies in Section 3, we compute valuation ratios of

dividend strips primarily using prices of S&P 500 index futures from LSEG Datastream and Fama-

Bliss zero-coupon bonds from the CRSP US Treasury Database and alternatively using options

1988; Baker and Wurgler, 2000; Lettau and Ludvigson, 2001; Lewellen, 2004; Cochrane, 2008; Ang and Bekaert,
2007; Goyal and Welch, 2007; Lettau and Van Nieuwerburgh, 2007; Campbell and Thompson, 2008; Rapach et al.,
2010; Kelly and Pruitt, 2013; Rapach et al., 2013; Golez, 2014; Rapach et al., 2016; Martin, 2017; Golez and Koudijs,
2018; Johnson, 2019; Kozak and Santosh, 2020; Chen et al., 2022; Kelly et al., 2024; Bordalo et al., 2024b).
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Table 1 Summary Statistics
This table reports summary statistics, including the number of observations, mean, standard deviation, minimum,
maximum, and quartiles, for the main variables. The sample is monthly from 1988:01 to 2019:12. Panel A summarizes
E𝐴𝑡 [Δ𝑒𝑡+1], E𝐴𝑡 [Δ𝑒𝑡+2], and E𝐴𝑡 [Δ𝑒𝑡+3], analysts’ forecasts of earnings growth for the first, second, and third year into
the future from IBES Global Aggregate (IGA). Δ𝑒𝑡 is the realized annual earnings growth from IGA. 𝐿𝑇𝐺𝑡 is forecasts
of long-term earnings growth, which we self-aggregate from the IBES Unadjusted US Summary Statistics File. Panel B
summarizes the rest of variables. These include our main return predictor, 𝑑𝑟 (“slope”); the price-dividend ratio 𝑝𝑑 of
the S&P 500 index; the filtered series for demeaned expected returns (𝜇𝐹) and dividend growth (𝑔𝐹) from Binsbergen
and Koijen (2010); the predictive factors for return (𝐾𝑃) and dividend growth (𝐾𝑃𝐶𝐹) from Kelly and Pruitt (2013);
dividend strip price-to-dividend ratios for 0.5 and 1 years (𝑠0.5, 𝑠1); the long-term dividend strip price-to-dividend ratio
for horizons beyond 1 year (𝑠1+); one-month and one-year log returns of the S&P 500 index (𝑟𝑡+1/12, 𝑟𝑡+1); one-month
and one-year log returns of the Fama-French market portfolio (𝑟𝑀𝐾𝑇

𝑡+1/12, 𝑟𝑀𝐾𝑇
𝑡+1 ); and the 1-year dividend growth rate of

the S&P 500 index and the Fama-French market portfolio (Δ𝑑𝑡+1, Δ𝑑𝑀𝐾𝑇
𝑡+1 ).

mean std min 25% 50% 75% max

Panel A: Analyst earnings growth forecasts

E𝐴𝑡 [Δ𝑒𝑡+1] 0.103 0.096 -0.167 0.056 0.103 0.154 0.425
E𝐴𝑡 [Δ𝑒𝑡+2] 0.134 0.043 -0.069 0.104 0.127 0.157 0.269
E𝐴𝑡 [Δ𝑒𝑡+3] 0.130 0.036 0.052 0.100 0.122 0.159 0.217
Δ𝑒𝑡 0.072 0.135 -0.380 -0.008 0.092 0.148 0.425
𝐿𝑇𝐺𝑡 0.125 0.018 0.093 0.115 0.120 0.129 0.187

Panel B: Predictors, returns and dividend growth

𝑑𝑟𝑡 4.027 0.494 2.952 3.727 4.044 4.208 6.632
𝑝𝑑𝑡 3.883 0.289 3.239 3.656 3.930 4.047 4.524
𝜇𝐹𝑡 -0.039 0.024 -0.091 -0.051 -0.041 -0.024 0.010
𝑔𝐹𝑡 0.019 0.059 -0.233 -0.002 0.031 0.056 0.132
𝐾𝑃𝑡 -0.504 0.073 -0.725 -0.562 -0.482 -0.450 -0.378
𝐾𝑃𝐶𝐹𝑡 -0.385 0.068 -0.605 -0.422 -0.389 -0.338 -0.220
𝑠0.5
𝑡 -0.819 0.281 -2.629 -0.883 -0.768 -0.666 -0.280
𝑠1
𝑡 -0.142 0.280 -2.241 -0.210 -0.098 0.016 0.393
𝑠1+
𝑡 3.863 0.297 3.204 3.629 3.913 4.030 4.521
𝑟𝑡+1/12 0.009 0.041 -0.184 -0.015 0.013 0.034 0.108
𝑟𝑡+1 0.095 0.157 -0.568 0.046 0.126 0.187 0.429
𝑟𝑀𝐾𝑇
𝑡+1/12 0.009 0.042 -0.187 -0.016 0.014 0.036 0.108
𝑟𝑀𝐾𝑇
𝑡+1 0.096 0.159 -0.554 0.036 0.128 0.194 0.440
Δ𝑑𝑡+1 0.059 0.070 -0.237 0.025 0.068 0.112 0.168
Δ𝑑𝑀𝐾𝑇

𝑡+1 0.058 0.081 -0.207 0.018 0.051 0.107 0.262

(from OptionMetrics) and dividend futures (from Goldman Sachs and Bloomberg) of the S&P

500 index for robustness. These ratios allow us to map out the latent state variables, which is key

for identifying the state-space dimensionality. Finally, to test the model’s implications on return

predictability in Section 4, we benchmark our return predictor against a wide array of predictors
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Figure 1 The One-Year Cliff of Corporate Earnings and Sales Guidance
This figure shows the horizon of management guidance announcements for S&P 500 firms from 1992 to 2019 (IBES
Guidance). Panels A and B show the distribution of guidance by quarterly horizons for EPS and sales, respectively.
The annotations highlight the percentage of guidance for the next four quarters or less. Panels C and D plot the time
series of the proportion of guidance for a horizon of four quarters or less for EPS and sales, respectively.

from the literature and machine learning models in a series of forecasting and spanning exercises.

Table 1 provides the summary statistics for the main variables. We will introduce the variable

names and specific details of data sources and variable construction in each relevant section.

Information supply and the one-year cliff. Information releases from publicly listed firms are an

important source of signals about aggregate economic conditions. We characterize a sharp decline

of information supply at the one-year horizon, using the IBES Guidance dataset that spans the

period from 1992 to 2019 and includes 28,000 management guidance announcements from S&P
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500 firms.10 In Panel A of Figure 1, we plot the frequency distribution of firms’ earnings guidance.

The vertical axis reports the number of earnings guidance, and the horizontal axis shows the

guidance horizon. Firms provide guidance towards the next fiscal year end and very rarely towards

the next two or three fiscal year ends. The guidance horizon is the difference between a fiscal year

end and the announcement date. In the frequency distribution, there is a sharp discontinuity around

the one-year horizon, beyond which firms seldom provide earnings guidance. An overwhelming

96% of all guidance announcements are for horizons of one year or less.

This scarcity of long-term corporate guidance creates an information cliff for the market

participants, leaving analysts and investors with little direct information from firms to anchor their

forecasts beyond the one-year mark. As shown in Panel C of Figure 1—where we compare the

fraction of guidance within four quarters to the fraction of guidance beyond four quarters, this short-

term focus in corporate guidance is not a recent phenomenon but has been a consistent feature of

corporate disclosure practices throughout our sample period.

One natural concern regarding earnings guidance is that corporate earnings may be subject

to management manipulation, which may limit their informativeness. However, we find a similar

pattern in sales guidance (see Panel B and D of Figure 1). Sales are less susceptible to manipulation

and is thus a more objective measure of corporate performance. The consistency across both earn-

ings and sales guidance suggests that the information cliff is not about firms’ earnings management

in conjunction with strategic disclosure but reflects standard corporate practices.

Since the aggregate stock market’s cash flow is closely tied to the macroeconomy, investors

may also rely on forecasts of macroeconomic variables from professionals and policymakers.

Table A.4 in the Internet Appendix summarizes the maximum forecast horizons for U.S. economic

growth from several leading sources, including the Blue Chip Economic Indicators, the Survey

of Professional Forecasters, the Livingston Survey, Consensus Economics, the Wall Street Journal

Economic Survey, and the Federal Reserve’s Summary of Economic Projections (SEP). While

some surveys, like the SEP, provide three-year forecasts for annual GDP growth, the majority
10Earnings guidance has become increasingly prevalent (Penman, 1980; Hutton et al., 2003; Miller, 2002).
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of professional forecasts cluster around the annual horizon. Some longer-term forecasts exist

(e.g., Blue Chip’s semiannual 5- to 10-year projections) but are typically multi-year averages.

Such averaging smooths out fluctuations and diminishes their informativeness about economic

environments at specific horizons beyond one year. This scarcity of detailed, long-term economic

forecasts reinforces the information cliff that the stock-market participants face.

The information cliff and cash-flow expectations. We examine how the scarcity of information

on long-term growth affects market participants’ expectations of future cash flows. IBES Global

Aggregates (IGA) provides analysts’ forecast of earnings growth for the S&P 500 index based

on firm-level forecasts. The aggregation procedure weighs individual companies by their market

capitalization.11 To transform earnings forecasts to forecasts of growth rates, IGA takes the ratio of

forecast for period 𝑡 + 𝑘 to forecast for 𝑡 + 𝑘 − 1. We consider forecasting horizons of one, two, and

three years (i.e., 𝑘 = 1, 2, 3), and the growth rate forecasts are denoted by E𝐴𝑡 [Δ𝑒𝑡+1], E𝐴𝑡 [Δ𝑒𝑡+2],

and E𝐴𝑡 [Δ𝑒𝑡+3], respectively.12 The data is available at a weekly frequency. We will consider both

weekly and monthly frequencies in our regression analysis. For estimation at monthly frequency,

we take the last weekly observation of each month. Our sample is from January 1988 to December

2019. We also utilize analyst forecasts for long-term growth (LTG). We aggregate firm-level LTG

from IBES to the index level.13 This data is available at the monthly frequency. It is aggregated to

the index level via the same aggregation procedure described above.

Using analysts’ forecasts, we predict earnings growth over the next 12 months, from the

13th to 24th month, and from the 25th to 36th month. The information cliff manifests as a sharp

deterioration in forecasting performance once the horizon extends beyond one year. Table 2 report

the results. In column (1), we regress the realized one-year growth rate of aggregate earnings from

firms covered by IGA on the analysts’ forecast of the same one-year horizon. The 𝑅2 is 73%,
11To deal with the fact that companies have different fiscal year-end, IGA calendarizes all company-level data to

a December calendar year before aggregation. This approach follows the Compustat rule. Please refer to “Thomson
Reuters Datastream IBES Global Aggregates Reference Guide” for more detail.

12Note that for 𝑘 = 1, the growth rate is simply calculated as the forecast divided by realized earnings.
13IBES firm-level forecasts of the annualized average growth rate of earnings over the next three to five years have

been adopted in the recent literature (e.g., Nagel and Xu, 2022, Bordalo et al., 2024b, and De la O and Myers, 2024).
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Table 2 Predicting Earnings Growth Across Horizons with Analyst Forecasts
This table reports the results of regressions that predict earnings growth at various horizons with analyst forecasts.
The dependent variables are realized earnings growth from IGA of next year, the year after, and the third year in the
future, and the average earnings growth between years 3 to 5. The independent variables are analysts’ forecasts of
one-year earnings growth between 𝑡 + 𝜏 to 𝑡 + 𝜏 + 1 across horizons (E𝐴𝑡 [Δ𝑒𝑡+𝜏+1], for 𝜏 = 0, 1, 2) from IGA and
the self-aggregated long-term earnings growth forecasts (𝐿𝑇𝐺𝑡 ) of the S&P 500 Index. The 𝑡-statistics are calculated
based on Newey-West standard errors with 18 lags are reported in parentheses.

Δ𝑒𝑡+1 Δ𝑒𝑡+2 Δ𝑒𝑡+3 Δ𝑒𝑡+2,𝑡+5

(1) (2) (3) (4)

Intercept -0.056 -0.097 -0.149 0.004
(-4.127) (-2.063) (-2.130) (0.047)

E𝐴𝑡 [Δ𝑒𝑡+1] 1.204
(20.101)

E𝐴𝑡 [Δ𝑒𝑡+2] 1.164
(3.683)

E𝐴𝑡 [Δ𝑒𝑡+3] 1.598
(3.342)

𝐿𝑇𝐺𝑡 0.486
(0.717)

𝑁 372 360 348 324
𝑅2 0.73 0.15 0.21 0.01

indicating that analysts in general are able to forecast near-term growth quite well.

Next, we change the forecasting target while maintaining the setup of right-side variables

in the regressions. In column (2) of Table 2, the analysts’ forecast for earnings growth from the

13th to 24th month only has a 𝑅2 of 15% for predicting earnings growth at the same horizon,

which stands in sharp contrast to the forecasting performance at one-year horizon in Column

(1). We obtain similar results when forecasting growth from the 25th to 36th month in column

(3). In the last column, we replicate the exercise for the average growth for years 3, 4 and 5,

Δ𝑒𝑡+2,𝑡+5 = (Δ𝑒𝑡+3 + Δ𝑒𝑡+4 + Δ𝑒𝑡+5)/3, which corresponds to the forecast horizon of LTG (a period

of between three to five years as per IBES’s definition).

As pointed out by Guo (2025) and Guo and Wachter (2025a), corporate announcements in

the first month of a quarter contain more information about the aggregate economic conditions than

the second and third months. Because the information supplied is mainly about firms’ performance

within the next year rather than in the subsequent years, we have three hypotheses. First, when

predicting earnings growth within the next year, analyst forecasts should exhibit stronger predictive
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A. In-sample 𝑅2 by month of the quarter
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B. RMSE by month of the quarter

Figure 2 Predicting Earnings Growth Across Horizons by Month of a Quarter
This figure reports, respectively in Pane A and B, the 𝑅2 of predictive regression and the Root Mean Squared Error
(RMSE) of predicting earnings at various horizons with analyst forecasts (as done in Table 2), with the regression
samples separated by month of a quarter to highlight the effect of information supply. The RMSE for LTG (3-year
average growth) is annualized by multiplying by

√
3 for comparability.

power in the first month of a quarter as firms supply information. Second, when predicting earnings

growth beyond one year, the predictive power of analyst forecasts should not vary a lot across
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months of a quarter, because even though firms supply more information in the first month, the

information is not about growth beyond the very next year. Third, the wedge between one-year and

long-term predictive power of analyst forecasts should be wider in the first month of a quarter when

information arrives for the upcoming year but not for subsequent years.

To examine the three hypotheses, we use analyst forecasts to predict earnings growth as in

Table 2 but separate the sample by month of a quarter. In Figure 2, we plot the predictive regression

𝑅2 in the top panel and the root mean squared error (RMSE) in the bottom panel, with regression

results in Table A.2 of Appendix III. Note that since the forecasting target in the last specification

involving the LTG is an average of growth rates over three years, we multiple its RMSE by
√

3 so

that its magnitude is comparable to that of RMSE from other forecasting regressions.

Our findings in Figure 2 support the three hypotheses. First, analyst forecasts of aggregate

earnings show greater accuracy measured in both 𝑅2 and RMSE in the first month of a quarter

than in the second and third months, a result attributable to the fresh information from firms’

performance guidance in the first month. Second, once the forecasting horizon extends to 2 or 3

years, the accuracy of analyst forecasts does not exhibit as large a variation across months of a

quarter. Third, comparing 𝑅2 and RMSE across forecasting horizons (i.e., within the same color),

we can see that the accuracy wedge between analyst forecast of one-year earnings and analyst

forecast for the subsequent years is wider in the first month of a quarter. For example, the 𝑅2 drops

from 78% to 18% (a wedge of 60%) in the first month when the forecasting period changes from

the first to the second year, but in the second month, the 𝑅2 wedge is 51% (= 69% - 18%).

Overall, we empirical exercises in this section demonstrate that the supply of information

from corporate announcements has a one-year cliff, which corresponds to the significantly higher

accuracy of analyst earnings forecasts at the one-year horizon compared to longer horizons. The

importance of information supply as a driver of this accuracy wedge is further supported by

the finding that the wedge is widest during the first month of the quarter, coinciding with peak

information release.14 The following sections embed the information cliff into a canonical model
14A potential concern is whether the sharp decline of forecasting accuracy is due to agents’ extrapolating past

fundamentals (e.g., Barberis et al., 1998; Barberis, 2018). We test this possibility by including lagged earnings growth

13



and explore its implications on several central objects in the asset pricing literature.

3 A Parametric Representation of Information Cliff

We provide a parametric representation of the information cliff through a state-space model (e.g.,

Lettau and Wachter, 2007). In the model, cash-flow expectations are driven by the state variables. To

sharpen the characterization of information cliff, we develop a method to identify the dimensionality

of state space. We find that the state space is two-dimensional, and therefore, the model can be

reduced to having one state variable driving the expected return (via the price of risk) and the other

driving the conditional expectation of cash-flow growth rate. The information cliff is equivalently

represented as a condition on the autocorrelation of the expected cash-flow growth rate.

3.1 A generic state-space model

We consider a dynamic economy where the information filtration is given by a Markov process.

The state of an economy at time 𝑡 is summarized by 𝑋𝑡 , a 𝐾-by-1 vector of state variables. We

assume that the law of motion of 𝑋𝑡 is given by a first-order vector autoregression

𝑋𝑡+1 = Π𝑋𝑡 + 𝜎⊤
𝑋 𝜖𝑡+1, (1)

where 𝜖𝑡+1 is a 𝑁-by-1 vector of shocks that capture all the news at 𝑡 + 1 and are independent over

time with normal distribution 𝑁 (0, Σ). Note that since any higher-order vector autoregression can

be written as a first-order vector autoregression by expanding the number of state variables, the

AR(1) specification is without loss of generality. The autoregressive coefficients are given by Π, a

constant 𝐾-by-𝐾 matrix, and 𝜎𝑋 is a 𝑁-by-𝐾 matrix of shock loadings.

The growth rate of dividend from 𝑡 to 𝑡 + 1 has a 𝑁-by-1 shock-loading vector 𝜎𝐷 ,

ln
(
𝐷𝑡+1
𝐷𝑡

)
= 𝑔𝑡 + 𝜎⊤

𝐷𝜖𝑡+1, (2)

as a control in our forecasting regressions. Table A.3 in the Internet Appendix shows that our main results are robust.
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where the time-varying expected dividend growth rate is given by

𝑔𝑡 = 𝑔 + 𝜙⊤𝑋𝑡 −
1
2
𝜎⊤
𝐷Σ𝜎𝐷 . (3)

We allow the state-variable loadings, 𝜙, to be any 𝐾-by-1 vector.

No arbitrage condition implies the existence of a stochastic discount factor

𝑀𝑡+1 = exp
{
−𝑟 𝑓 −

1
2
𝜆⊤𝑡 Σ𝜆𝑡 − 𝜆⊤𝑡 𝜖𝑡+1

}
, (4)

where 𝑟 𝑓 is the one-period risk-free rate and the 𝑁-by-1 vector of risk prices, 𝜆𝑡 , is given by

𝜆𝑡 = 𝜆 + 𝜃⊤𝑋𝑡 . (5)

We do not impose restrictions on 𝜃, the state-variable loadings of the prices of risks, 𝜆𝑡 . The

prices of risks (or associated the change of measure) may also be interpreted as reflecting belief

distortions, in which case agents’ subjective expectation may deviate from the rational expectation.

The information cliff is about whether agents’ current information set contains useful signal

about cash-flow growth beyond the next year. In this generic setup, characterizing this property

seems rather complicated. Next, we investigate the dimensionality of 𝑋𝑡 , and then we show that once

the dimensionality is pinned down, characterizing the information cliff becomes straightforward.

3.2 State space dimensionality

The measurement framework. To determine the dimensionality of 𝑋𝑡 , we develop a method

based the mapping between dividend strip prices and the state variables, 𝑋𝑡 . Let 𝑃𝑛𝑡 denote the

time-𝑡 price of dividend at 𝑡 +𝑛. The no-arbitrage condition implies a recursive equation: for 𝑛 ≥ 1,

𝑃𝑛𝑡 = E𝑡
[
𝑀𝑡+1𝑃

𝑛−1
𝑡+1

]
, (6)

with 𝑃0
𝑡 = 𝐷𝑡 . The log price-dividend ratio of the dividend strip with maturity 𝑛 is given by

𝑠𝑛𝑡 ≡ ln
(
𝑃𝑛𝑡

𝐷𝑡

)
= 𝐴 (𝑛) + 𝐵 (𝑛)⊤ 𝑋𝑡 , (7)
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where 𝐴 (𝑛) and 𝐵 (𝑛) are deterministic functions of 𝑛 given by a system of recursive equations

(A.4)-(A.5) in the appendix with the initial conditions 𝐴 (0) = 0 and 𝐵 (0) = 0.

Given 𝐾 log price-dividend ratios of strips,
{
𝑠
𝑛𝑖
𝑡

}𝐾
𝑖=0, with a full-rank loading matrix,

B
(
{𝑛𝑖}𝐾𝑖=1

)
≡ [𝐵 (𝑛1) , 𝐵 (𝑛2) , ..., 𝐵 (𝑛𝐾)]⊤, the state space is recovered by

𝑋𝑡 = B
(
{𝑛𝑖}𝐾𝑖=1

)−1 [
𝑠
𝑛1
𝑡 − 𝐴 (𝑛1) , ..., 𝑠𝑛𝐾𝑡 − 𝐴 (𝑛𝐾)

]⊤ (8)

Thus, a collection of log price-dividend ratios of dividend strips can span the state space. The

revealed (rotated) state variables may represent various underlying economic forces.15 Next, we

empirically identify the state-space dimensionality by analyzing the strip valuation ratios.

Mapping out the state variables. To obtain 𝑃𝑛𝑡 , we first calculate the value of dividends paid

beyond the first 𝑛 years, denoted by 𝑃𝑛+𝑡 . Under the risk-neutral measure (“𝑅𝑁”),

𝑃𝑛+𝑡 = 𝑒−𝑛𝑟 𝑓E𝑅𝑁𝑡

[ +∞∑︁
𝜏=1

𝑒−𝜏𝑟 𝑓 𝐷𝑡+𝑛+𝜏

]
= 𝑒−𝑛𝑟 𝑓E𝑅𝑁𝑡

[
E𝑅𝑁𝑡+𝑛

[ +∞∑︁
𝜏=1

𝑒−𝜏𝑟 𝑓 𝐷𝑡+𝑛+𝜏

] ]
, (9)

where the expectation operator, E𝑅𝑁𝑡+𝑛 [·], was inserted under the law of iterated expectations. Note

that the (ex-dividend) stock price at 𝑡 + 𝑛 is

𝑃𝑡+𝑛 = E𝑅𝑁𝑡+𝑛

[ +∞∑︁
𝜏=1

𝑒−𝜏𝑟 𝑓 𝐷𝑡+𝑛+𝜏

]
, (10)

so we have

𝑃𝑛+𝑡 = 𝑒−𝑛𝑟 𝑓E𝑅𝑁𝑡 [𝑃𝑡+𝑛] . (11)

The first component, 𝑒−𝑛𝑟 𝑓 , is 𝑍𝐶𝐵𝑛𝑡 , the price of a zero-coupon bond with maturity 𝑛. The second

component is the risk-neutral expectation of stock price, i.e., the futures price, 𝐹𝑛𝑡 (Duffie, 2001).
15Duffie and Kan (1996) point out that state variables of the bond market can be linearly mapped to zero-coupon bond

yields. This observation is critical for estimating term structure models (Duffee, 2013). The equity counterparts of
zero-coupon bonds are dividend strips (Lettau and Wachter, 2007). Dividend processes are added to build no-arbitrage
equity models that are more flexible than fully specified equilibrium models (e.g., Bekaert and Grenadier, 1999; Pan,
2002; Brennan, Wang, and Xia, 2004; Lettau and Wachter, 2007, 2011; Koijen, Lustig, and Van Nieuwerburgh, 2015;
Backus, Boyarchenko, and Chernov, 2018; Kragt, de Jong, and Driessen, 2020). Our analysis relies on the prices of
dividend strips to map out state variables. Giglio, Kelly, and Kozak (2024) analyze the dual problem—that is, they
compute strip prices from empirically specified and observed dynamics of state variables.
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Once we obtain, for example, 𝑃1+, the price of one-year dividend, 𝑃1
𝑡 , is given by

𝑃1
𝑡 = 𝑃𝑡 − 𝑃1+

𝑡 , (12)

which is the difference between the price of dividends across all horizons, 𝑃𝑡 (i.e., the equity price),

and the price of dividends paid after the first year. Following the same method, we calculate the

price of dividends paid in the next six months, 𝑃0.5
𝑡 from 𝑃𝑡 − 𝑃0.5+

𝑡 . In our empirical analysis,

we use the valuation ratios of dividend strips with maturity 1 and 0.5, i.e., 𝑠1
𝑡 = ln(𝑃1/𝐷𝑡) and

𝑠0.5
𝑡 = ln(𝑃0.5/𝐷𝑡), and the valuation ratio of dividends paid beyond one year, 𝑠1+

𝑡 = ln(𝑃1+/𝐷𝑡).16

We consider these equity strips as the futures data at 0.5 and 1 year maturities are the most liquid.

For futures prices, we use S&P 500 index futures, which are the most actively traded equity

futures. The futures prices are from Datastream.17 The zero-coupon bond prices are from the

Fama-Bliss database. The return and market capitalization of the S&P 500 index are obtained from

CRSP. The dividend data is from S&P Global and obtained from the updated dataset of Goyal and

Welch (2007). Our sample starts in January 1988 for high-quality dividend data and, importantly,

a sufficiently liquid futures market without structural changes.18 After the market crash of October

1987, regulators overhauled several trade-clearing protocols.19 Our sample ends in December 2019.

Lastly, Fama-French factors at the monthly frequency are obtained from Ken French’s website.

For robustness, we construct dividend strip prices with two alternative methods.20 First, using

S&P 500 index options data from OptionMetrics (1996-2019), we derive the implied dividend strip

prices for 0.5 to 2 years maturity via the put-call parity, following Binsbergen et al. (2012). Second,
16There is no collinearity: 𝑠1+

𝑡 + 𝑠1
𝑡 is the sum of two ratios in logarithms, ln(𝑃1/𝐷𝑡 ) + ln(𝑃1+/𝐷𝑡 ), which is not 𝑝𝑑𝑡 .

17We obtain the daily settlement prices for the S&P 500 futures. For return and cash flow prediction at the monthly
frequency, we use the settlement price of the last trading day of each month. The maturities of the traded futures
contracts vary over time, so to obtain futures prices with constant maturity, we apply the shape-preserving piecewise
cubic interpolation to complete the futures curve. The results using linear interpolation are similar.

18Wang, Michalski, Jordan, and Moriarty (1994) identify structural changes of liquidity in the S&P 500 futures
market in the pre-1987 period, during the market crash, and in the post-1987 period.

19The stock market crash in October 1987 reveals anomalous trading in the futures market that was primarily driven
by portfolio insurance (Brady Report (1988)). According to the New York Stock Exchange: “In response to the market
breaks in October 1987 and October 1989, the New York Stock Exchange instituted circuit breakers to reduce volatility
and promote investor confidence. By implementing a pause in trading, investors are given time to assimilate incoming
information and the ability to make informed choices during periods of high market volatility.”

20A large literature discusses how to measure strip prices from market data (e.g., Binsbergen et al., 2012; Binsbergen
and Koijen, 2017; Cejnek and Randl, 2016, 2020; Cejnek et al., 2021; Gormsen and Lazarus, 2023; Golez and
Jackwerth, 2024) and the associated challenges (Schulz, 2016; Song, 2016; Boguth et al., 2022).
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C. Dividend Futures (2005-2019)

Figure 3 Principal Component Analysis of Dividend Strip Valuation Ratios
This figure presents three plots from a principal component analysis of valuation ratios computed from three data
sources. Panel A is based on dividend strip prices from the S&P 500 futures from 1988 to 2019. The valuation ratios
include 𝑝𝑑𝑡 , 𝑠0.5

𝑡 , 𝑠1
𝑡 , and 𝑠1+

𝑡 . Panel B is based on dividend strip prices from the S&P 500 options from 1996 to 2019.
The valuation ratios include 𝑝𝑑𝑡 , 𝑠0.5

𝑡 , 𝑠1
𝑡 , 𝑠1.5

𝑡 , 𝑠2
𝑡 , and 𝑠2+

𝑡 . Panel C is based on dividend strip prices from the S&P 500
dividend futures from 2005 to 2019. The valuation ratios include 𝑝𝑑𝑡 , 𝑠𝑖𝑡 (for 𝑖 ∈ {1, 2, . . . , 7}), and 𝑠7+

𝑡 .

we use S&P 500 dividend futures data from Goldman Sachs and Bloomberg (2005-2019) and

interpolate the futures curve for dividend strip prices with maturities ranging from 1 to 7 years,

following Binsbergen et al. (2013).21 We choose the futures-implied dividend strips as our main

sample due to the longer time series and greater liquidity.

Measuring state space dimensionality. As shown in Section 3.1, valuation ratios of dividend

strips are linear combinations of the underlying state variables. In Panel A of Figure 3, we report the

results from principal component analysis (PCA) of strip valuation ratios computed from the index

futures data (our baseline sample). The first two components account for 96% of total variance.

We show the PCA results based on the options data in Panel B of Figure 3 and the results based on

dividend futures data in Panel C. These results indicate that the state space is two-dimensional.

However, as pointed out by Kelly and Pruitt (2015), a shortcoming of PCA analysis is that

information embedded in the principal components may not be the most relevant for objects of
21We are grateful to Christian Mueller-Glissmann at Goldman Sachs for sharing the dividend futures data
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Figure 4 In-Sample and Out-of-Sample 𝑅2 from Dividend Growth Predictive Regressions
This figure reports in- and out-of-sample 𝑅2 for predicting annual S&P 500 Index dividend growth. The predictors
include the predictor from Binsbergen and Koijen (2010) (𝑔𝐹), the predictor from Kelly and Pruitt (2013) (𝐾𝑃𝐶𝐹),
and different combinations of 𝑝𝑑, 𝑠0.5 (price-dividend ratio of six-month strip), 𝑠1 (price-dividend ratio of one-year
strip) and 𝑠1+ (price-dividend ratio of dividends beyond one year). Each round dot represents in-sample 𝑅2 with a
95% bootstrapped confidence interval. Each triangle represents out-of-sample 𝑅2 by recursively forecasting returns
beginning in 1998:01.

interest, such as the expected return and cash-flow growth. Next, we take a predictive regression

approach as the expected return and expected dividend growth rate are driven by the state variables.

In Figure 4, we report 𝑅2 of predicting S&P 500 dividend growth over the next year using

different sets of valuation ratios. A round dot represents adjusted in-sample 𝑅2 (reported with

its 95% confidence interval) and a triangle represents out-of-sample 𝑅2. We report the detailed

regression results in Table A.5 in the Internet Appendix. Our predictive regression is run on

monthly observations. For comparison, we include predictors from prior studies. Our state-space

approach is closely related to Binsbergen and Koijen (2010). Binsbergen and Koijen (2010) use

the realized returns and dividends to estimate a latent-state model and filter out the conditional
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expected return, 𝜇𝐹𝑡 , and the conditional expected dividend growth rate, 𝑔𝐹𝑡 . These filtered variables

are also combinations of state variables (subject to estimation errors). We replicate the analysis of

Binsbergen and Koijen (2010) and compare our state-space representation via observable valuation

ratios with information from the filtered 𝜇𝐹𝑡 and 𝑔𝐹𝑡 . Kelly and Pruitt (2013) also take a state-space

approach and use the cross-section of market-to-book ratios of individual stocks to extract the

expected return and dividend growth of the aggregate market. We have also replicated Kelly and

Pruitt (2013) and include their state variables (predictors) for comparison.

Our results show that there exist two valuation ratios, for example, 𝑠1 and 𝑠1+, sufficient for

forecasting dividend growth, indicating the state space being two-dimensional. Note that the cash

flow predictive power varies across different sets of valuation ratios, suggesting that it is important

to take a predictive regression approach rather than simply relying on the PCA of valuation ratios.

Any given pair of valuation ratios can almost fully span the two principal components, but they

may contain distinct information about return and cash flow dynamics.

In Figure 5, we report the 𝑅2 of predicting annual returns of the S&P 500 with different sets of

valuation ratios.22 Our regression is run monthly. We report the detailed regression results in Table

A.6 in the Internet Appendix. For comparison, we include predictors motivated by a state-space

approach, such as 𝜇𝐹 from Binsbergen and Koijen (2010) and 𝐾𝑃 from Kelly and Pruitt (2013),

and we add the price-dividend ratio. The conclusion is similar to that from cash flow prediction:

having three or more valuation ratios does not improve predictability relative to the best-performing

pairs of valuation ratios, for example, 𝑠1 and 𝑠1+, indicating that the state space is two-dimensional.

3.3 The information cliff: a parametric presentation

We have shown that two state variables suffice to span the spaces of dividend valuations across

maturities, expected returns, and expected cash-flow growth rates. Next, we set the dimension of

state variables, 𝑋𝑡 , to two in the model from Section 3.1. This will allow us to derive a sharp
22Binsbergen et al. (2013) use valuation ratios of dividend strips to forecast strip returns and dividends. Different

from Binsbergen et al. (2013), our focus is on the asset that strips aggregate up to (equity index) rather than strips.
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Figure 5 In-Sample and Out-of-Sample 𝑅2 from Return Predictive Regressions
This figure reports in- and out-of-sample 𝑅2 for predicting annual S&P 500 Index returns. The predictors include the
predictor from Binsbergen and Koijen (2010) (𝜇𝐹), the predictor from Kelly and Pruitt (2013) (𝐾𝑃), and different
combinations of 𝑝𝑑, 𝑠0.5 (price-dividend ratio of six-month strip), 𝑠1 (price-dividend ratio of one-year strip) and 𝑠1+

(price-dividend ratio of dividends beyond one year). Each round dot represents in-sample 𝑅2 with a 95% bootstrapped
confidence interval. Each triangle represents out-of-sample 𝑅2 by recursively forecasting returns beginning in 1998:01.

implication of the information cliff on expected cash-flow growth and develop an empirical test.

As in Lettau and Wachter (2007), we rotate the state variables so that one drives the price

of risk, while the other drives the expected dividend growth rate. Let 𝑋𝑡 = [𝑦𝑡 , 𝑧𝑡]⊤. The state

variable, 𝑦𝑡 , with a law of motion

𝑦𝑡+1 = 𝜌𝑦𝑦𝑡 + 𝜎⊤
𝑦 𝜖𝑡+1 , (13)

drives the price of risk 𝜆𝑡 , so equation (5) becomes

𝜆𝑡 = 𝜆 + 𝑦𝑡 , (14)
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and the stochastic discount factor (SDF) is given by

𝑀𝑡+1 = exp
{
−𝑟 𝑓 −

1
2
𝜆2
𝑡 (𝜎⊤

𝜆 Σ𝜎𝜆)2 − 𝜆𝑡𝜎⊤
𝜆 𝜖𝑡+1

}
, (15)

where, as in Section 3.1, 𝜖𝑡+1 is a 𝑁-by-1 vector of shocks, independent over time with normal

distribution 𝑁 (0, Σ). The price of risk for the 𝑛-th shock is 𝜆𝑡𝜎𝜆 (𝑛), where 𝜎𝜆 (𝑛) is the 𝑛-th

element of 𝜎𝜆. The expected dividend growth rate, 𝑔𝑡 = E[ln (𝐷𝑡+1/𝐷𝑡)], is given by

𝑔𝑡 = 𝑔 + 𝑧𝑡 −
1
2
𝜎⊤
𝐷Σ𝜎𝐷 , (16)

where the state variable, 𝑧𝑡 , has the following law of motion

𝑧𝑡+1 = 𝜌𝑧𝑧𝑡 + 𝜎⊤
𝑧 𝜖𝑡+1 . (17)

The 𝑁-by-1 shock vector 𝜖𝑡+1 contains news at 𝑡 + 1. The variables’ shock loadings may differ, for

example, 𝜎𝑧 ≠ 𝜎𝑦. 𝑧𝑡 and 𝑦𝑡 can be correlated through their overlapping exposure to shocks.

Throughout our analysis, the expectation operator represents the econometricians’ belief or

rational expectation, and 𝑔𝑡 , is rational expectation of cash-flow growth over the next year that

is a univariate function of 𝑧𝑡 . We allow agents’ subjective expectation to deviate from rational

expectation. In this two-dimensional setup, a distorted belief, denoted by P̂ can be defined through

a Radon-Nikodym derivative with respect to the physical measure P given by

𝑑P̂
𝑑P = exp

{
−1

2
𝜆̂2
𝑡 (𝜎̂⊤

𝜆 Σ𝜎̂𝜆)2 − 𝜆̂𝑡𝜎̂⊤
𝜆 𝜖𝑡+1

}
, (18)

where 𝜆̂𝑡 , in its most general form, can a linear function of both of the state variables, 𝑦𝑡 and 𝑧𝑡 :

𝜆̂𝑡 = 𝛼̂0 + 𝛼̂𝑦𝑦𝑡 + 𝛼̂𝑧𝑧𝑡 . (19)

Under the distorted belief, agents’ expected dividend growth over the next year is given by

𝑔̂𝑡 =𝑔̄ + 𝑧𝑡 − 𝜎⊤
𝑧 Σ𝜎̂𝜆

(
𝛼̂0 + 𝛼̂𝑦𝑦𝑡 + 𝛼̂𝑧𝑧𝑡

)
− 1

2
𝜎⊤
𝐷Σ𝜎𝐷

=𝑔̄ + 𝛽𝑦𝑦𝑧 + 𝛽𝑧𝑧𝑡 −
1
2
𝜎⊤
𝐷Σ𝜎𝐷 , (20)

where, to simplify notations, we introduce the linear coefficients, 𝛽𝑧 and 𝛽𝑦. The law of motion

(17) under rational expectation has 𝑧𝑡’s coefficient equal to one. Belief distortion may cause 𝛽𝑧 ≠ 1.
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Moreover, 𝑦𝑡 does not enter 𝑔𝑡 in (17), but may enter the distorted expectation, 𝑔̂𝑡 if 𝛽𝑦 ≠ 0.23

No matter whether the agents have rational expectation or distorted beliefs, should 𝜌𝑧—the

autoregressive coefficient of 𝑔𝑡—be not zero, the information cliff cannot exist. To see this, consider

the cash-flow growth from 𝑡 + 1 to 𝑡 + 2, which is the sum of 𝑔𝑡+1 and a shock to the realized growth

at 𝑡 + 2 with a zero mean, so the time-𝑡 expectation (or best forecast) of growth from 𝑡 + 1 to 𝑡 + 2 is

E𝑡 [ln (𝐷𝑡+2/𝐷𝑡+1)] =E𝑡 [𝑔𝑡+1] = 𝑔 + E𝑡 [𝑧𝑡+1] −
1
2
𝜎⊤
𝐷Σ𝜎𝐷

=𝑔 + 𝜌𝑧𝑧𝑡 −
1
2
𝜎⊤
𝐷Σ𝜎𝐷 . (21)

Here, as in our empirical exercise in Section 2, we are evaluating whether agents’ information set

has signal about future growth, so the expectation operator, E𝑡 [·], reflects the rational expectation

or econometricians’ belief, and accordingly, E𝑡 [𝑧𝑡+1] = 𝜌𝑧𝑧𝑡 under the physical-measure law of

motion (17). If agents have rational expectation, their growth expectation is 𝑔𝑡 , which is linear in 𝑧𝑡 ;

otherwise, under belief distortions, agents’ growth expectation can be a linear function of 𝑧𝑡 and 𝑦𝑡 .

In either case, agents’ time-𝑡 information set contains 𝑧𝑡 . If 𝜌𝑧 ≠ 0, agents has signal about growth

from 𝑡 + 1 to 𝑡 + 2, which implies that the information cliff does not exist. Therefore, a necessary

condition for the information cliff is 𝜌𝑧 = 0. The next proposition summarizes this result.

Proposition 1 (Information cliff: a parametric presentation) If agents do not have information

about cash-flow growth beyond the next year, we have 𝜌𝑧 = 0.

Discussion: misperception of the persistence. Several recent studies highlight the importance

of agents’ perceived persistence of state variables (e.g., Gabaix, 2019; Wang, 2020). Our theoretical

framework can accommodate subjective persistence of expected cash-flow growth rate. As shown

in (20), even though 𝑧𝑡 is not persistent under 𝜌𝑧 = 0, 𝑦𝑡 may still be persistent. In this case, agents’

taking (20) as the model for the expected growth rate would commit a similar mistake as in Guo

and Wachter (2025b): they have the wrong mental model of a persistent expected growth rate. As

emphasized in our literature review, our paper focuses on the implication of information cliff on
23Since 𝜆𝑡 linearly drives the expected return (as will be shown in Section 4.1), belief distortion implies the expected

return being correlated with agents’ growth expectation errors, in line with prior findings (see our literature review).
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𝑧𝑡 (the actual signal about future cash flows), i.e., 𝜌𝑧 = 0, rather than how bias in agents’ belief

behaves and propagates over the forecasting horizon. That said, our model has a flexible setup that

accommodates potential belief distortions like the one in Guo and Wachter (2025b).

3.4 Testing the parametric representation

We examine whether the expected cash-flow growth lacks persistence, i.e., 𝜌𝑧 = 0. As the coverage

of dividend forecasts started in 2003, we follow the literature and consider analysts’ earnings

forecasts as proxy for cash-flow expectations (available in a longer sample starting 1976).24 An

accounting identity connects the earnings and dividends: 𝐷𝑡 = Earnings𝑡 × (1 − plowback rate𝑡).

As documented by Pástor, Sinha, and Swaminathan (2008) and Chen, Da, and Zhao (2013), the

plowback rate is quite stable. Therefore, the earnings growth rates are close to those of dividends.

Analyst forecasts may not perfectly reflect the rational expectations of growth. Therefore, we

add a noise term between the analyst expectations and expectations in our model:

E𝐴𝑡 [Δ𝑒𝑡+𝑘 ] = E𝑡 [Δ𝑒𝑡+𝑘 ] + 𝜀𝐴𝑡,𝑘 , (22)

where we consider 𝑘 = 1, 2, 3, and E𝑡 (·) represents the rational expectation as in the model. From

equation (16) in the model, we obtain

E𝐴𝑡 [Δ𝑒𝑡+1] = 𝑐 + 𝑧𝑡 + 𝜀𝐴𝑡,1

E𝐴𝑡 [Δ𝑒𝑡+2] = 𝑐 + E𝑡 [𝑧𝑡+1] + 𝜀𝐴𝑡,2 = 𝑐 + 𝜌𝑧𝑧𝑡 + 𝜀𝐴𝑡,2

E𝐴𝑡 [Δ𝑒𝑡+3] = 𝑐 + E𝑡 [𝑧𝑡+2] + 𝜀𝐴𝑡,3 = 𝑐 + 𝜌2
𝑧 𝑧𝑡 + 𝜀𝐴𝑡,3,

where 𝑐 is a constant and 𝜀𝐴
𝑡,𝑘

has a zero mean, 𝑘 = 1, 2, 3. Using the first equation to substitute out

24Analyst forecasts reflect their beliefs as compensation are linked to forecast precision, and their forecasts are likely
to reflect market participants’ beliefs broadly (e.g., Mikhail, Walther, and Willis, 1999; Cooper, Day, and Lewis, 2001;
Bradshaw, 2004; Hillenbrand and McCarthy, 2021). Forecasts may be distorted due to behavioral, incentive, and
institutional frictions (e.g., Gu and Wu, 2003; Malmendier and Shanthikumar, 2007, 2014; Binsbergen et al., 2022).
Bias is contained as long as such frictions do not correlate systematically with analysts’ true beliefs.
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Table 3 Estimating the Persistence of Expected cash-flow growth (Analyst Forecasts)
This table reports the estimates of 𝜌𝑧 , the autoregressive coefficient of expected cash-flow growth rate, based on
equation (23). The estimation uses aggregate earnings growth forecasts of the S&P 500 Index obtained from IGA.
Columns (1) and (3) report the estimates of 𝜌𝑧 using monthly data, while columns (2) and (4) report the estimates
of 𝜌𝑧 using weekly data. Columns (1) and (2) use earnings growth forecasts for 1, 2, and 3 years ahead (“Y1:Y3”)
to estimate the two-equation system (23), while columns (3) and (4) only use earnings growth forecasts for 1 and 2
years ahead (“Y1:Y2”) to estimate the first equation in (23). 𝑡-statistics based on Driscoll-Kraay standard errors with
autocorrelation of up to 18 lags are reported in parentheses. Data sample: 1988:01–2019:12.

(1) (2) (3) (4)

(1 − 𝜌𝑧)𝑔 0.129 0.122 0.141 0.133
(13.995) (16.906) (15.536) (16.745)

𝜌𝑧 0.028 0.015 -0.071 -0.073
(0.690) (0.381) (-1.379) (-1.295)

𝑁 768 1887 384 943
𝑅2 0.003 0.001 0.025 0.028
Sample Monthly Weekly Monthly Weekly
Periods Y1:Y3 Y1:Y3 Y1:Y2 Y1:Y2

𝑧𝑡 in the second and third equations, we obtain a system:
E𝐴𝑡 [Δ𝑒𝑡+2]

E𝐴𝑡 [Δ𝑒𝑡+3]

︸          ︷︷          ︸
≡ y𝐴𝑡

= (1 − 𝜌𝑧) 𝑔 + 𝜌𝑧


E𝐴𝑡 [Δ𝑒𝑡+1]

E𝐴𝑡 [Δ𝑒𝑡+2]

︸          ︷︷          ︸
≡ x𝐴𝑡

+

𝜀𝐴
𝑡,1 − 𝜌𝑧𝜀

𝐴
𝑡,0

𝜀𝐴
𝑡,2 − 𝜌𝑧𝜀

𝐴
𝑡,1

︸           ︷︷           ︸
≡ 𝜖 𝐴𝑡

. (23)

We estimate 𝜌𝑧 by regressing y𝐴𝑡 on x𝐴𝑡 . The system of equations becomes a linear regression system

of earnings growth estimates, E𝐴𝑡 [Δ𝑒𝑡+1], E𝐴𝑡 [Δ𝑒𝑡+2], and E𝐴𝑡 [Δ𝑒𝑡+3]. Note that 𝜖 𝐴𝑡 is allowed to

be serially correlated across the starting dates of growth periods, i.e., 𝑡, 𝑡 + 1, and 𝑡 + 2.

The results are reported in Panel A of Table 3. We estimate equation (23) with both monthly

(columns 1 and 3) and weekly observations (columns 2 and 4) of analyst forecasts. In columns

(1) and (2), our estimation includes both equations in (23), while in Column (3) and (4), we only

include the first equation, i.e., only using forecasts at one- and two-year horizons for better data

quality. Across the specifications, the estimate 𝜌̂𝑧 is statistically indistinguishable from zero.

Next, we consider an alternative way to estimate 𝜌𝑧 by exploring the relationship between

forecasts of short- and long-term earnings growth (LTG). Given the autoregressive structure (17),

the expected growth rate from period 𝑛 to 𝑛 + 1 depends on the expected growth rate over the very

next period via a coefficient 𝜌𝑛𝑧 . If 𝜌𝑧 is zero, then 𝜌𝑛𝑧 is zero, which implies that the average growth
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Table 4 Estimating the Persistence of Expected cash-flow growth (LTG Forecasts)
This table reports estimates of 𝜌𝐿𝑇𝑧 in the regression, log(1 + 𝐿𝑇𝐺𝑡 ) = const + 𝜌𝐿𝑇𝑧 E𝐴𝑡 [Δ𝑒𝑡+1] + 𝜀𝑡 , where 𝐿𝑇𝐺𝑡 is
the long-term growth forecasts (LTG) of the S&P 500 Index, self-aggregated from stock-level LTG forecasts from the
IBES Unadjusted Summary File. The short-term forecast, E𝐴𝑡 [Δ𝑒𝑡+1], is the IGA 1-year earnings growth forecast.
𝑡-statistics based on Newey-West standard errors with autocorrelation of up to 18 lags are reported in parentheses.

(1)

log(1 + 𝐿𝑇𝐺𝑡 )

Intercept 0.116
(28.615)

E𝐴𝑡 [Δ𝑒𝑡+1] 0.017
(0.711)

𝑁 384
𝑅2 0.011

rate over three years and beyond does not depend on the expected growth rate over the next year.

Therefore, we regress monthly observations of LTG forecast on the near-term expected growth rate,

i.e., E𝐴𝑡 [Δ𝑒𝑡+1], and denote the regression coefficient by 𝜌𝐿𝑇𝑧 . In Table 4, our estimate is statistically

indistinguishable from zero, which implies 𝜌𝑧 = 0, consistent with our findings in Table 3.

For robustness, we consider a method to estimate 𝜌𝑧 without using analyst forecasts (Appendix

II). We fit the latent state model given by (16) and (17) to dividend data to filter out the expected

cash-flow growth rate. The results corroborate our findings on 𝜌𝑧 being close to zero.

4 The Information Cliff and Expected Returns

The previous section presents a critical implication of the information cliff on the expected cash-

flow growth rate. Next, we draw the connection between the information cliff and the expected

return. We not only provide additional asset-pricing results but also corroborate our findings on the

information cliff. So far, we have provided direct evidence in Section 2 and tested its parametric

implication in Section 3. While these tests directly target the information cliff, they are not standard.

In this section, we adopt a well-established set of asset-pricing tools in our empirical tests.
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4.1 Return predictability: the other side of information cliff

The theoretical framework. We utilize the two-dimensional state-space model in Section 3.3 to

drive a necessary and sufficient condition of 𝜌𝑧 = 0 and formalize the tests. Note that our focus in

this section is the expected return (i.e., the expectation of future returns under the econometricians’

belief or rational expectation), not agents’ subjective expectations of future returns.

In Appendix I, we solve the log price-dividend ratio of the market:

𝑝𝑑𝑡 = 𝐴𝑝𝑑 + 𝐵𝑝𝑑𝑦𝑡 + 𝐶𝑝𝑑𝑧𝑡 , (24)

where 𝐴𝑝𝑑 , 𝐵𝑝𝑑 , and 𝐶𝑝𝑑 are constant, and the log price-dividend ratio of the one-year strip,

𝑠1
𝑡 = 𝐴1 + 𝐵1𝑦𝑡 + 𝐶1𝑧𝑡 . (25)

We define the slope of valuation term structure as the difference between the price-dividend

ratio—valuation level of the whole market—and the valuation ratio of one-year dividend strip:

𝑑𝑟𝑡 = 𝑝𝑑𝑡 − 𝑠1
𝑡 = 𝐴𝑝𝑑 − 𝐴1 + (𝐵𝑝𝑑 − 𝐵1)𝑦𝑡 + (𝐶𝑝𝑑 − 𝐶1)𝑧𝑡 . (26)

An increase in 𝑑𝑟𝑡 reflects a greater fraction market value coming from cash flows beyond the very

next year, a steepening of the valuation term structure. The next proposition shows that when 𝜌𝑧,

the autoregressive coefficient of expected dividend growth rate 𝑧𝑡 , is zero, we have 𝑑𝑟𝑡 and E𝑡 [𝑟𝑡+1]

being univariate functions of one another. Hence, the notation, 𝑑𝑟 , represents “discount rate”.

Proposition 2 (Return predictability under the information cliff) The expected return at time 𝑡

is a linear function of 𝑦𝑡: E𝑡 [𝑟𝑡+1] = 𝐴𝑒𝑟 +𝐵𝑒𝑟 𝑦𝑡 , where 𝐴𝑒𝑟 and 𝐵𝑒𝑟 are constant. A necessary and

sufficient condition for 𝜌𝑧 = 0 is that 𝑑𝑟𝑡’s loading on 𝑧𝑡 is zero, i.e., 𝐶𝑝𝑑 −𝐶1 = 0, or equivalently,

that 𝑑𝑟𝑡 is a function of only 𝑦𝑡 , so E𝑡 [𝑟𝑡+1] is a univariate linear function of 𝑑𝑟𝑡 , and vice versa.

Therefore, to test 𝜌𝑧 = 0, we can test the necessary and sufficient condition—that is, 𝑑𝑟𝑡 drives

the expected return. This link between 𝑑𝑟𝑡 and the expected return has an intuitive explanation. If

𝑧𝑡 lacks persistence (𝜌𝑧 = 0), market participants are not informed about growth beyond 𝑡 + 1.25

25Under 𝜌𝑧 = 0, our model of cash-flow expectations is in line with the belief model in De La O and Myers (2021).
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Therefore, when the valuation term structure steepens (i.e., 𝑑𝑟𝑡 increases), a greater fraction of

market value is from 𝑡 + 1 onward not due to objectively improved long-run growth but due to a

lower discount rate (a lower 𝑦𝑡) that benefits the valuation of long-term cash flows more than that

of near-term cash flows; similarly, when the valuation term structure flattens (i.e., 𝑑𝑟𝑡 decreases), it

is because of a higher discount rate rather than negative information on long-run growth that brings

down the value of dividends beyond one year more than valuation of dividends within one year.

Note that we do not study the term structure of equity risk premium (the difference in average

returns between short- and long-horizon strips), which has attracted arguably most attention among

studies on dividend strips.26 We only use dividend strip prices for information on state variables,

and our focus is on the expected market return. The term structure that is relevant for our analysis

is the one of strip valuation ratios rather than the term structure of strip average returns.

Predictive regression. Next, we provide a thorough analysis of the return predictive power of

𝑑𝑟𝑡 . We start with standard predictive regression for annual returns of S&P 500 index:

𝑟𝑡+1 = 𝛼 + 𝛽𝑑𝑟𝑡 + 𝜖𝑡+1, (27)

Because we use overlapping monthly data, we adopt Newey and West (1987) standard errors with

18 lags to account for the moving-average structure induced by overlap (Cochrane and Piazzesi,

2005). We also calculate Hodrick (1992) standard errors. Hodrick (1992) shows that GMM-based

autocovariance correction (e.g., Newey and West, 1987) may have poor small-sample properties.

Under the serial correlation in the error term, another concern is the bias induced by the persistence

of the predictor.27 In the appendix (Table A.7), we also report the IVX-Wald test (Kostakis,

Magdalinos, and Stamatogiannis, 2014) that explicitly accounts for predictor persistence.
26There is an extensive literature on the term structure of equity risk premium (e.g., Lettau and Wachter, 2007;

Hansen et al., 2008; Lettau and Wachter, 2011; Binsbergen et al., 2013; Belo et al., 2015; Hasler and Marfè, 2016;
Ai et al., 2018; Backus et al., 2018; Miller, 2018; Bansal et al., 2021; Gonçalves, 2021; Gormsen, 2021; Boguth
et al., 2022; Hasler and Khapko, 2023). The difference in average returns of short- and long-term dividend strips
led to decomposing returns of the market and investment strategies to the short-duration or long-duration component
(Gonçalves, 2019; Gormsen and Koijen, 2020; Binsbergen, 2021; Knox and Vissing-Jørgensen, 2022).

27The persistence of a return predictor can cause small-sample bias (Nelson and Kim, 1993; Stambaugh, 1999) and
spurious regression (Ferson, Sarkissian, and Simin, 2003).
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Adjusted 𝑅2 measures in-sample forecasting performance. Following the literature on the

discrepancy between in- and out-of-sample performances (Bossaerts and Hillion, 1999; Goyal and

Welch, 2007), we report the out-of-sample 𝑅2 and two tests of out-of-sample performance. We form

out-of-sample forecasts as a real-time investor, using data up to time 𝑡 in the regression to estimate

𝛽, which is then multiplied by the time-𝑡 value of the predictor to form the forecast. Out-of-sample

forecasting starts from Dec. 1997 when we have at least ten years of data. Out-of-sample 𝑅2 is

𝑅2
𝑂𝑂𝑆 = 1 −

∑
𝑡 (𝑟𝑡+1 − 𝑟𝑡+1)2∑
𝑡 (𝑟𝑡+1 − 𝑟 𝑡)2 ,

where 𝑟𝑡+1 is the forecast value and 𝑟 is the average of twelve-month returns (the first is January-

December 1998). The out-of-sample 𝑅2 lies in the range (−∞, 1], where a negative number means

that a predictor provides a less accurate forecast than the historical mean.

We report the 𝑝-value of two out-of-sample performance tests, “𝐸𝑁𝐶” and “𝐶𝑊”. 𝐸𝑁𝐶 is

the encompassing forecast test derived by Clark and McCracken (2001), which is widely used in the

literature. We test whether the predictor has the same out-of-sample forecasting performance as the

historical mean and compare the value of the statistic with critical values calculated by Clark and

McCracken (2001) to obtain a 𝑝-value range. Clark and West (2007) adjust the standard MSE t-test

statistic to produce a modified statistic (𝐶𝑊) that has an asymptotic distribution well approximated

by the standard normal distribution, so for 𝐶𝑊 , we report the precise 𝑝-value.

Table 5 presents the results. Column (1) shows that the slope of valuation term structure,

𝑑𝑟, demonstrates a striking degree of return predictive power. The in-sample estimation generates

a predictive 𝑅2 reaching 24.8%.28 Out-of-sample forecasts deliver an 𝑅2 of 14.6%, significantly

outperforming the historical mean as shown by the 𝑝-values of 𝐸𝑁𝐶 and 𝐶𝑊 . The predictive

coefficient is also large in magnitude, indicating high volatility of the conditional expected return.

A decrease of 𝑑𝑟 by one standard deviation adds 7.7% to the expected return. Both Newey-West

and Hodrick 𝑡-statistics are significant at least at the 1% level. The negative predictive coefficient
28Foster, Smith, and Whaley (1997) discuss the potential data mining issues that arise from researchers searching

among potential regressors. They derive a distribution of the maximal 𝑅2 when 𝑘 out of 𝑚 potential regressors are
used as predictors and calculate the critical value for 𝑅2, below which the prediction is not statistically significant. For
instance, when 𝑚 = 50, 𝑘 = 5, and the number of observations is 250, the 95% critical value for 𝑅2 is 0.164.
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Table 5 Return Prediction
This table reports the return prediction results. The dependent variable of the predictive regression is the log annual
return of the S&P 500 index, 𝑟𝑡+1. We include the following predictors: the slope of valuation term structure 𝑑𝑟𝑡 ,
price-dividend ratio 𝑝𝑑𝑡 , the return predictor from Binsbergen and Koijen (2010) 𝜇𝐹 , and the predictor from Kelly
and Pruitt (2013) 𝐾𝑃. We report 𝑡-statistics for each coefficient based Hodrick (1992) standard error (in squared
brackets) and Newey and West (1987) standard error with 18 lags (in parentheses). Starting from January 1998, we
construct out-of-sample forecasts using rolling regressions estimated with data up to the forecast date. We report in-
and out-of-sample 𝑅2s and 𝑝-values from the ENC (Clark and McCracken, 2001) and CW test (Clark and West, 2007).

𝑟𝑡+1

(1) (2) (3) (4) (5)

𝑑𝑟𝑡 -0.156 -0.228
Hodrick 𝑡 [-3.354] [-2.924]
Newey-West 𝑡 (-4.499) (-3.517)

𝑝𝑑𝑡 -0.199 0.141
[-2.367] [1.721]
(-2.747) (1.209)

𝜇𝐹𝑡 2.584
[2.313]
(2.804)

𝐾𝑃𝑡 0.895
[2.960]
(2.857)

𝑁 372 372 372 372 372
𝑅2 0.248 0.138 0.156 0.149 0.264
OOS 𝑅2 0.146 0.004 -0.032 0.041 0.180
𝑝(𝐸𝑁𝐶) <0.05 >0.10 >0.10 <0.05 <0.01
𝑝(𝐶𝑊) 0.022 0.200 0.303 0.031 0.021

of 𝑑𝑟 suggests that one can form a market timing strategy betting against the slope of valuation term

structure: reduce market exposure when 𝑑𝑟 increases. An out-of-sample 𝑅2 of 14.6% in column

(1) of Table 5 implies that the Sharpe ratio of this strategy is 0.58, which is much higher than the

Sharpe ratio of 0.37 from the buy-and-hold strategy in Campbell and Thompson (2008).29

Column (2) of Table 5 reports the results for 𝑝𝑑, the most commonly adopted return predictor.

Its predictive power is much weaker than that of 𝑑𝑟 across all metrics. Its in-sample 𝑅2 is almost

half of that of 𝑑𝑟 , and 𝑝𝑑 barely exhibits any out-of-sample predictive power with 𝑅2 equal to 0.4%.

In both 𝐸𝑁𝐶 and𝐶𝑊 tests, 𝑝𝑑 fails to beat the historical mean with any statistical significance. The

IVX-Wald test of Kostakis, Magdalinos, and Stamatogiannis (2014) in Table A.7 in the appendix

also supports the significant predictive power of 𝑑𝑟 while rejecting that of 𝑝𝑑.
29In the Internet Appendix, we show how to calculate the Sharpe ratio based on the out-of-sample 𝑅2.
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Next, we compare 𝑑𝑟 with two return predictors that are conceptually related. Binsbergen and

Koijen (2010) extract information about state variables that drive the conditional expected return

and expected cash-flow growth by estimating a latent-state model. Our approach differs as we do

not estimate or filter the state variables but instead rely on observable state-variable proxies, such as

𝑑𝑟 and 𝑝𝑑. In Column (3) of Table 5, we follow the procedure in Binsbergen and Koijen (2010) to

construct their return predictor, 𝜇𝐹 . While 𝜇𝐹𝑡 outperforms 𝑝𝑑, its predictive power is significantly

weaker than that of 𝑑𝑟 across different metrics in our sample period.

Kelly and Pruitt (2013) deploy another filtering method that utilizes the cross-section of

market-to-book ratios of individual stocks. These valuation ratios are correlated with state variables,

but, as shown in Internet Appendix I.2, they contain firm-level noise that is orthogonal to the

expected market return. Kelly and Pruitt (2013) use partial least squares to reduce noise. Our

approach differs as 𝑑𝑟 does not contain firm-level noise under the information cliff. Following

the procedure in Kelly and Pruitt (2013), we construct their return predictor, denoted by 𝐾𝑃. In

column (4) of Table 5, we report the results. 𝐾𝑃 significantly outperforms 𝑝𝑑 but underperforms

𝑑𝑟𝑡 across metrics such as Newey-West 𝑡-statistic, Hodrick 𝑡-statistic, in-sample 𝑅2, out-of-sample

𝑅2, 𝐸𝑁𝐶, 𝐶𝑊 , and IVX-Wald test reported that is in Table A.7 in the online appendix.

In the Internet Appendix, we demonstrate the robustness of our results by repeating the

analysis for alternative forecasting targets, even though our theoretical framework requires the

forecasting target to be S&P 500 return as 𝑑𝑟𝑡 is about the valuation term structure of S&P 500. In

Table A.8, we replace the S&P 500 annual return with the excess annual return. In Table A.9 and

A.10, we consider the Fama-French market portfolio return and excess return, respectively.30

30As we have made clear, our goal is to predict annual returns (one period-ahead in our model). However, we also
show that 𝑑𝑟 demonstrates superior return predictive power at a monthly horizon. Our baseline results are reported in
Table A.11, and see Table A.12 for results on predicting monthly S&P 500 excess return. Table A.13 and Table A.14
report the results on predicting the monthly Fama-French market portfolio return and excess return, respectively.
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Table 6 Rolling Estimates of the Persistence of Expected Cash-Flow Growth
This table reports summary statistics (mean, median, and percentiles) of rolling-window estimates of 𝜌𝑧 , the autore-
gressive coefficient of expected cash-flow growth rate. Each estimate is obtained from a three-year window of weekly
observations using equation (23) applied to IGA aggregate earnings growth forecasts for the S&P 500 Index.

count mean 10% 15% 20% 25% 50% 75% 80% 90%

𝜌̂𝑧,𝑡 384 0.025 -0.130 -0.105 -0.082 -0.066 0.001 0.074 0.094 0.196

4.2 Rolling-window estimation

Our full-sample estimation in Section 3.4 has shown that 𝜌𝑧 is close to zero, and our full-sample

estimation of return predictive regressions has also demonstrated that 𝑑𝑟 has very strong predictive

power, lending further support to 𝜌𝑧 = 0 as the return predictive power of 𝑑𝑟 corresponds to

𝜌𝑧 = 0 (see Proposition 2 of Section 4.1). In the following, we empirically examine validity of this

necessary and sufficient condition through rolling-window estimation. In each rolling window, we

estimate 𝜌𝑧 as in Section 3.4 (Table 3) and predict returns using 𝑑𝑟. We show that in around 20%

of the rolling windows where 𝜌𝑧 deviates from zero, the predictive power of 𝑑𝑟 is indeed weaker.

Each rolling window contains three years of weekly observations of analyst forecasts.31 We

summarize the statistics of the rolling-window estimates of 𝜌𝑧 in Table 6. Naturally, how agents’

belief formation model may vary over time, so the estimate, 𝜌̂𝑧, fluctuates. However, its mean and

median across rolling windows are close to zero, in line with the full-sample estimate in Table 3.

In the next proposition based on the model in Section 3.3, we show that the value of 𝜌𝑧 is directly

linked to the forecasting error from using 𝑑𝑟 to predict returns. The proof is in Appendix I.4.

Proposition 3 (𝜌𝑧 and return forecast errors) Let 𝜈𝑡+1 denote the forecast error from predicting

𝑟𝑡+1 with 𝑑𝑟𝑡 , and let 𝜌𝑧 denote the autoregressive coefficient of expected cash-flow growth 𝑧𝑡 in

equation (17). If 𝜌𝑧 > 0, then 𝜈𝑡+1 is positive. If 𝜌𝑧 < 0, then 𝜈𝑡+1 is negative.

The theoretical result in Proposition 3 shows the tight connection between 𝑑𝑟’s return predic-

tive power and 𝜌𝑧 = 0, a parametric manifestation of the information cliff, from a new perspective.
31The results are similar if we use alternative window lengths from one to five years (available upon request). Our

sample period is 1988–2019. The first estimate of 𝜌𝑧 uses three years of IGA data starting in 1985.
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Figure 6 Average Return Prediction Errors Across Subsamples by 𝜌𝑧 Estimate
This figure plots mean return forecast errors computed in-sample and out-of-sample using 𝑑𝑟𝑡 as the predictor. The
sample is divided into four categories based on three-year rolling-window estimates of 𝜌𝑧: significantly negative,
insignificantly negative, insignificantly positive, and significantly positive (significance determined at the 5% level)
The number of observations and their percentage of the total sample are indicated below each bar.

When 𝜌𝑧 deviates from zero, the return forecasting error of 𝑑𝑟 exhibits systematic patterns. This re-

sult receives direct empirical support. in Figure 6, we plot the average in-sample and out-of-sample

forecasting errors for four categories of rolling windows: 1) the estimate of 𝜌𝑧 is significantly

negative; 2) the estimate of 𝜌𝑧 is negative but statistically insignificant; 3) the estimate of 𝜌𝑧 is

positive but statistically insignificant; 4) the estimate of 𝜌𝑧 is significantly positive. As predicted

by Proposition 3, the sign of return forecasting errors aligns well with that of the estimate of 𝜌𝑧.

In Table 7, we report results of regressing 𝑑𝑟’s in- and out-of-sample return forecasting

errors on the estimate of 𝜌𝑧 or the sign of the estimate of 𝜌𝑧. The number of observations for this

regression is the number of rolling windows. As predicted by Proposition 3, we obtain a positive

regression coefficient, in line with the message in Figure 6.

In summary, Proposition 2 states a necessary and sufficient condition of 𝜌𝑧 = 0, connecting

it to the return predictive power of 𝑑𝑟 , the slope of valuation term structure. Proposition 3

characterizes 𝑑𝑟’s return forecasting error varies with 𝜌𝑧’s deviation from zero, strengthening the

33



Table 7 Time-Varying 𝜌𝑧 and Return Predictability
This table reports the regression results examining the relationship between return prediction errors and rolling-window
estimate of the autoregressive coefficient of expected cash-flow growth rate. The dependent variables are the in-sample
residuals (𝜀𝑡+1) and out-of-sample forecast errors (𝜐𝑡+1) from return predictive regressions based on 𝑑𝑟𝑡 . Independent
variables include the expected cash-flow growth persistence parameter 𝜌̂𝑧,𝑡 (estimated using three-year rolling windows
of analyst forecasts) and an indicator variable I𝜌̂𝑧,𝑡>0 that equals one for 𝜌̂𝑧,𝑡 > 0. Newey-West 𝑡-statistics (18 lags) are
reported in parentheses. The sample period is 1998:01–2019:12, beginning with the first out-of-sample forecast.

𝜀𝑡+1 𝜐𝑡+1

(1) (2) (3) (4)

Intercept -0.011 -0.057 -0.046 -0.078
(-1.127) (-3.217) (-4.076) (-3.982)

𝜌̂𝑧,𝑡 0.556 0.469
(5.143) (4.599)

1
(
𝜌̂𝑧,𝑡 > 0

)
0.098 0.071

(5.039) (3.141)

𝑁 252 252 252 252
𝑅2 0.173 0.110 0.094 0.043

link between 𝑑𝑟 as a return predictor and the information cliff.

Therefore, the other side of cash-flow information cliff is return predictability. This result

echoes the findings that the absence of cash flow predictability indicates return predictability (e.g.,

Cochrane, 2008) but differs in meaningful ways. First, as we have shown in Section 2, cash-

flow growth within one year horizon is in fact highly predictable. Second, the return predictive

power does not come from the traditional price-dividend ratio but from the slope of valuation term

structure, 𝑑𝑟 . In the last part of our paper, we compare 𝑑𝑟 against the other return predictors from

the literature and nonlinear (machine learning) methods. Under our result from Proposition 2, the

strong return predictive power of 𝑑𝑟 lends support to the existence of information cliff.

4.3 Benchmarking the return prediction results

Before we embark on a battery of tests of 𝑑𝑟’s return predictive power against that of other predictors,

we want to highlight the intuitive nature of using the slope of valuation term structure to predict

returns under the cash flow information cliff. When 𝑑𝑟 increases, the steepening of the valuation

term structure suggests that a greater fraction of market value comes from cash flows at longer

horizons. If market participants are not informed about growth beyond the very next year (under
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Figure 7 In-Sample and Out-of-Sample 𝑅2 Wedge between 𝑑𝑟 and Other Return Predictors
This figure compares annual return prediction 𝑅2 between 𝑑𝑟𝑡 and other predictors from prior studies. Panels A and
B report, respectively, the differences in in-sample (IS) and out-of-sample (OOS) 𝑅2 between 𝑑𝑟 and an alternative
predictor. A positive value signifies that 𝑑𝑟 has a stronger predictive power than the alternative within the same sample
period. Most predictors are from Goyal and Welch (2007) and include the price-dividend ratio (pd), the default yield
spread (dfy), the inflation rate (infl), stock variance (svar), the cross-section premium (csp, available in 1988-2002), the
dividend payout ratio (de), the long-term yield (lty), the term spread (tms), the T-bill rate (tbl), the default return spread
(dfr), the dividend yield (dy), the long-term rate of return (ltr), the earnings-to-price ratio (ep), the book to market ratio
(bm), the investment-to-capital ratio (ik), the net equity expansion ratio (ntis), the percent equity issuing ratio (eqis),
and the consumption-wealth-income ratio (cay). KP is the predictive factor extracted from 100 book-to-market and
size portfolios from Kelly and Pruitt (2013). 𝑑𝑝𝐶𝑜𝑟𝑟 is the dividend-price ratio corrected for option-implied dividend
growth in Golez (2014) (available in 1994-2011). 𝜇𝐹 is the filtered series for expected returns following Binsbergen and
Koijen (2010). SII is the short interests index from Rapach, Ringgenberg, and Zhou (2016) (available in 1988-2014).
SVIX is an option-implied lower bound of annual equity premium in Martin (2017) (available in 1996-2012).

the information cliff), the steepening must be driven by a decline in the discount rate that boosts

valuation of long-duration cash flows more than that of near-term cash flows simply because the

valuation of long-duration cash flows is more sensitive to discount-rate variation. Likewise, when

𝑑𝑟 decreases, the flattening of valuation term structure is driven by a higher discount rate. In

summary, under the cash flow information cliff, the slope reflects the discount rate.

Comparing the slope and other predictors. We have compared the return predictive power of

𝑑𝑟 with that of 𝑝𝑑, 𝜇𝐹 , and 𝐾𝑃. Figure 7 compares 𝑑𝑟 with more predictors from the literature,

including the default yield spread (dfy), the inflation rate (infl), stock variance (svar), the cross-

section premium (csp), the dividend payout ratio (de), the long-term yield (lty), the term spread

(tms), the T-bill rate (tbl), the default return spread (dfr), the dividend yield (dy), the long-term

rate of return (ltr), the earnings-to-price ratio (ep), the book to market ratio (bm), the investment-

35



Machine Learning Slope

0.001 0.01 0.1 1 10 100 1000 dr

0.00

0.05

0.10

0.15

Ridge shrinkage parameter              

O
O

S
 R

2

Machine Learning: KMZ Machine Learning: KMZ + Valuation Ratios Slope: dr

Figure 8 Return Prediction: The Role of Nonlinearity
This figure shows the out-of-sample (OOS) 𝑅2 of the slope of S&P 500 valuation term structure 𝑑𝑟 and machine-
learning (ML) models in Kelly, Malamud, and Zhou (2024). We forecast annual S&P 500 returns at the monthly
frequency, with OOS prediction beginning in 1998:01 and OOS 𝑅2 computed following Goyal and Welch (2007). The
ML models use a 12-month training window, 𝛾 = 2, and a Random Fourier Features (RFF) count 𝑃 ranging from 2 to
12,000. The darker blue bars represent the ML models using 15 predictor variables (as in Kelly, Malamud, and Zhou,
2024). For the lighter blue bars, we augment the signal set with valuation ratios (i.e., 𝑠0.5, 𝑠1, 𝑠1+, 𝑑𝑟, and 𝑝𝑑). The
figure compares the best OOS 𝑅2 for each shrinkage parameter against the OOS 𝑅2 achieved using 𝑑𝑟 (the orange bar).

to-capital ratio (ik), the net equity expansion ratio (ntis), the percent equity issuing ratio (eqis), and

the consumption-wealth-income ratio (cay), which are summarized in Goyal and Welch (2007),

and others that are proposed more recently, such as adjusted dividend yield, 𝑑𝑝𝐶𝑜𝑟𝑟 (Golez, 2014),

short interest index, SII (Rapach, Ringgenberg, and Zhou, 2016), and SVIX (Martin, 2017).32 We

also include 𝑝𝑑, 𝜇𝐹 , and 𝐾𝑃. In Figure 7, we report in- and out-of-sample 𝑅2 of 𝑑𝑟 minus those

of other predictors. All columns are in the positive region, indicating 𝑑𝑟 performs better.

Finally, in the Internet Appendix, we repeat the exercise in Figure 7 for alternative forecasting

targets, such as S&P 500 excess annual return (Figure A.2), Fama-French market portfolio annual

return (Figure A.3), and Fama-French market portfolio excess annual return (Figure A.4).
32Note that the dividend yield (dy) is not the inverse of price-dividend ratio (𝑝𝑑) because in the denominator of dy

is the lagged market value (not the current value).
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The role of nonlinearity. Following Lettau and Wachter (2007), our theoretical framework is an

exponential-affine model. This framework motivates our empirical analysis and facilitates the in-

terpretation of our results. One concern over this type of model is nonlinearity: the valuation ratios,

𝑝𝑑, and 𝑑𝑟 may no longer be linear functions of state variables (or vice versa), and accordingly,

our forecasting exercises may have mistakenly ignored important nonlinearity.

Kelly, Malamud, and Zhou (2024) develop a method based on ridge regressions to account

for nonlinearity. Given a set of predictors (signals), their forecasting models can be expanded

progressively to incorporate nonlinear terms (“model complexity”). We replicated their analysis:

given a value of ridge shrinkage parameter that indexes a class of forecasting models, we plot the

out-of-sample 𝑅2 against the degree of model complexity (see Figure A.5 in the appendix). In

Figure 8, we report the maximum 𝑅2 under each value of ridge shrinkage parameter and compare

it against the 𝑅2 obtained from the univariate predictive regression with 𝑑𝑟 as the predictor. We

consider two cases, one with a signal base including all of our strip valuation ratios (state variable

proxies) and other predictors and the second signal set including only the other predictors.

The machine learning model is essentially a signal aggregator with the optimal degree of

complexity and nonlinearity. The fact that the simple OLS with 𝑑𝑟 delivers an out-of-sample 𝑅2

above that of the nonlinear model suggests that the linear structure generated from the exponential-

affine model is an adequate approximation.33 Overall, our analysis has two implications. First,

in terms of raw signals, 𝑑𝑟 contains sufficient information, so one may not seek “big data” (i.e.,

alternative signals) for forecasting market returns. Second, combining all signals (including our state

variable proxies) nonlinearly does not improve forecasting performance, validating our exponential-

affine framework that implies a linear relationship between state variables and the expected return.

Discussion: Spanning tests. The bond literature highlights the critical issue of unspanned state

variables (i.e., state variables that are not spanned by bond yields, the equivalent of dividend strip
33Note that due to estimation errors, the machine learning model may underperform our simple OLS with 𝑑𝑟 as the

predictor even when 𝑑𝑟 and other valuation ratios are included as signals.

37



valuation ratios in the bond markets).34 We find that this is not the case in our analysis of expected

stock-market return. We have performed the following spanning tests in the appendix. In Table

A.15, we conduct bivariate predictive regressions with 𝑑𝑟 as one predictor and the other being one

of the alternative predictors. Across all bivariate predictive regressions, 𝑑𝑟, always has a coefficient

that is statistically significant at 1% level, while almost all the other predictors are driven out,

showing an insignificant coefficient. The short interest index has a significant coefficient but, as

shown in Figure 7, its out-of-sample 𝑅2 is deep in the negative territory (below the 15% out-of-

sample 𝑅2 of 𝑑𝑟 by more than 25%). Inflation also has a significant coefficient in Table A.15 but

also an out-of-sample 𝑅2 close to zero. Table A.16 reports an alternative spanning test. We run

trivariate predictive regressions with 𝑑𝑟, 𝑝𝑑, and the third predictor being one of the alternative

predictors. As in the bivariate predictive regressions, the coefficients of all the alternative predictors

are insignificant at 1% (except SII). Moreover, the predictive coefficient of 𝑝𝑑 is insignificant.

5 Conclusion

This paper characterizes an “information cliff”—a structural feature of the stock market where the

supply of information about aggregate cash flows drops precipitously beyond a one-year horizon.

In contrast to a large literature that emphasizes biases in how agents process information, we

begin with the source of the information itself. We provide strong evidence for this cliff using the

horizons of corporate guidance. By exploring the timing of information supply (Guo, 2025; Guo

and Wachter, 2025a), we demonstrate the connection between information supply and the sharp

decline of analyst forecast accuracy at the one-year horizon, contributing to the growing literature

on market participants’ short- and long-term cash-flow expectations.

To understand the asset pricing implications of this information structure, we develop a

flexible framework that extends the model of Lettau and Wachter (2007). A key methodological
34Since Duffie and Kan (1996), using bond yields to map out the state variables has been key to the estimation of

term structure models (Duffee, 2013). Unspanned state variables include stochastic volatility and macro factors (e.g.,
Collin-Dufresne and Goldstein, 2002; Cooper and Priestley, 2008; Bikbov and Chernov, 2009; Ludvigson and Ng,
2009; Andersen and Benzoni, 2010; Duffee, 2011; Joslin et al., 2014; Cieslak and Povala, 2015).
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innovation of our paper is to empirically discipline the model’s structure. By analyzing the valuation

ratios of aggregate dividend strips that map out the (latent) state variables, we show that two state

variables, which can be rotated to represent expected returns and expected dividend growth, are

sufficient to capture the dynamics of the aggregate stock market.

This empirically-grounded two-dimensional structure allows us to draw a sharp link between

the information cliff and canonical objects in asset pricing. The cliff implies that expected cash-flow

growth must lack persistence; any persistent component would provide a basis for forecasting growth

beyond one year, contradicting the cliff. We test and confirm this prediction: the autoregressive

coefficient of expected aggregate cash-flow growth is indistinguishable from zero.

Our model also shows that under the information cliff, the expected market return is a

univariate function of the slope of the valuation term structure. Intuitively, with no new information

about long-term growth, a steepening of the slope—where the valuation of distant cash flows rises

relative to near-term cash flows—must be driven by a lower discount rate. Empirically, we find this

slope is a remarkably robust return predictor, outperforming a large set of established predictors in

both in-sample and out-of-sample tests and subsuming their forecasting power. A linear regression

with the slope as a predictor outperforms non-linear aggregator of a large set of predictors.

In summary, our paper documents the information cliff and its implications on the expected

cash-flow growth and expected return. Our findings also shed light on potential market mispricing.

The success of the valuation slope as a return predictor suggests that while market participants

are well-informed about the near term, mispricing is concentrated in the valuation of long-term

cash flows. This shifts the focus of market timing from betting against the overall valuation level

(e.g., the price-dividend ratio) to betting against the valuation term structure. The information

cliff provides a rational, information supply-side foundation for why long-horizon expectations can

appear untethered from fundamentals (Bordalo et al., 2024b) and why the relative pricing of long-

and short-term cash flows holds the key to excess volatility and time-varying expected returns.
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Internet Appendix
“The Information Cliff”

Appendix I: Derivation

I.1 Solving the valuation ratios
The price-dividend ratio of the dividend strip with maturity 𝑛, 𝑃𝑛,𝑡/𝐷𝑡 , satisfies the following
recursive equation

𝑃𝑛,𝑡

𝐷𝑡

= E𝑡

[
𝑀𝑡+1

𝐷𝑡+1
𝐷𝑡

𝑃𝑛−1,𝑡+1

𝐷𝑡+1

]
. (A.1)

We conjecture that

ln
(
𝑃𝑛,𝑡

𝐷𝑡

)
= 𝐴 (𝑛) + 𝐵 (𝑛)𝑇 𝑋𝑡 . (A.2)

Substituting this expression and expressions of stochastic discount factor and dividend growth
into the recursive equation, we have

exp
{
𝐴 (𝑛) + 𝐵 (𝑛)⊤ 𝑋𝑡

}
=E𝑡

[
exp

{
−𝑟 𝑓 −

1
2
𝜆⊤𝑡 Σ𝜆𝑡 − 𝜆⊤𝑡 𝜖𝑡+1 + 𝑔𝑡 + 𝜎⊤

𝐷𝜖𝑡+1 + 𝐴 (𝑛 − 1) + 𝐵 (𝑛 − 1)⊤ 𝑋𝑡+1

}]
=E𝑡

[
exp

{
𝑔𝑡 − 𝑟 𝑓 −

1
2
𝜆⊤𝑡 Σ𝜆𝑡 + 𝐴 (𝑛 − 1) + 𝐵 (𝑛 − 1)⊤ Π𝑋𝑡 + (𝜎𝐷 − 𝜆𝑡 + 𝜎𝑋𝐵 (𝑛 − 1))⊤ 𝜖𝑡+1

}]
= exp
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2
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}
{
+1

2
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}
= exp

{
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}
(A.3)

The coefficients on 𝑋𝑡 should match 𝐵 (𝑛) on the left hand side, so we have

𝐵 (𝑛) =
(
Π⊤ − 𝜃Σ𝜎𝑋

)
𝐵 (𝑛 − 1) + 𝜙 − 𝜃Σ𝜎𝐷 . (A.4)

The constants must sum up to 𝐴 (𝑛) on the left hand side, so we have

𝐴 (𝑛) =𝐴 (𝑛 − 1) + 𝑔 − 𝑟 − (𝜎𝐷 + 𝜎𝑋𝐵 (𝑛 − 1))⊤ Σ𝜆+ (A.5)
1
2
(𝜎𝐷 + 𝜎𝑋𝐵 (𝑛 − 1))⊤ Σ (𝜎𝐷 + 𝜎𝑋𝐵 (𝑛 − 1)) .

The fact that 𝑃0
𝑡 = 𝐷𝑡 implies the boundary conditions, 𝐴 (0) = 𝐵 (0) = 0, which pins down a

solution of 𝐴 (𝑛) and 𝐵 (𝑛).

A.1



Finally, we solve the log price-dividend ratio of the aggregate stock market. We conjecture

𝑝𝑑𝑡 = ln (𝑃𝑡/𝐷𝑡) = 𝐴 + 𝐵𝑇𝑋𝑡 , (A.6)

and proceed to solve 𝐴 and 𝐵. Following Campbell and Shiller (1988), we log-linearize the stock
market return

𝑟𝑚𝑘𝑡𝑡+1 =𝜅0 + 𝜅1𝑝𝑑𝑡+1 − 𝑝𝑑𝑡 + Δ𝑑𝑡+1

=𝜅0 − (1 − 𝜅1) 𝐴 − 𝐵⊤ (I − 𝜅1Π) 𝑋𝑡 + 𝑔𝑡 + (𝜅1𝜎𝑋𝐵 + 𝜎𝐷)⊤ 𝜖𝑡+1 (A.7)

Under the no-arbitrage condition, we have

1 = E𝑡
[
𝑀𝑡+1 exp(𝑟𝑚𝑘𝑡𝑡+1 )

]
. (A.8)

We follow the same method of matching undetermined coefficients in the analysis of dividend strip
valuation ratios and solve

𝐴 =
1

1 − 𝜅1

[
𝑔 − 𝑟 + 𝜅0 − (𝜅1𝜎𝑋𝐵 + 𝜎𝐷)⊤ Σ𝜆 + 1

2
(𝜅1𝜎𝑋𝐵)⊤ Σ (𝜅1𝜎𝑋𝐵) + (𝜅1𝜎𝑋𝐵)⊤ Σ𝜎𝐷

]
(A.9)

𝐵 =
(
I − 𝜅1Π

⊤ − 𝜅1𝜃Σ𝜎𝑋
)−1 (𝜙 − 𝜃Σ𝜎𝐷 − 𝛾) . (A.10)

I.2 Valuation ratios from the cross section
Consider an individual stock 𝑖. The dividend dynamics of firm 𝑖 depend not only on the aggregate
state variables, 𝑋𝑡 , but also on the firm 𝑖-specific state variables, 𝑍𝑖,𝑡 , that is 𝐾𝑖-dimensional and
independent from 𝑋𝑡 . Without loss of generality, we assume that 𝑍𝑖,𝑡 evolves as a first-order vector
autoregression

𝑍𝑖,𝑡+1 = Ω𝑍𝑖,𝑡 + 𝜎⊤
𝑖,𝑍𝜐𝑖,𝑡+1, (A.11)

where 𝜐𝑖,𝑡+1 is a 𝑁𝑖-by-1 vector of 𝑖-specific news that has a normal distribution 𝑁 (0, Σ𝑖) and
is independent over time and independent from the aggregate shocks 𝜖𝑡+1. We use subscript 𝑖 to
differentiate firm 𝑖 from the aggregate variables (without subscript 𝑖) and other firms (with subscript
𝑗 ≠ 𝑖).

The dividend growth rate of firm 𝑖 loads on the aggregate and idiosyncratic shocks

ln
(
𝐷𝑖,𝑡+1

𝐷𝑖,𝑡

)
= 𝑔𝑖,𝑡 + 𝜎⊤

𝑖,𝐷𝜖𝑡+1 + 𝜎⊤
𝑖,𝜐𝜐𝑖,𝑡+1, (A.12)

where the expected dividend growth rate is given by

𝑔𝑖,𝑡 = 𝜙
⊤
𝑖 𝑋𝑡 + 𝛿⊤𝑖 𝑍𝑖,𝑡 + 𝑔𝑖 −

1
2
𝜎⊤
𝑖,𝐷Σ𝜎𝑖,𝐷 − 1

2
𝜎⊤
𝑖,𝜐Σ𝑖𝜎𝑖,𝜐, (A.13)

which loads on the aggregate state variables, 𝑋𝑡 , and firm 𝑖-specific state variables, 𝑍𝑖,𝑡 .
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The ratio of firm 𝑖’s dividend strip price, 𝑃𝑛
𝑖,𝑡

, to firm 𝑖’s current dividend is

𝑃𝑛
𝑖,𝑡

𝐷𝑖,𝑡
= exp

{
𝐴𝑖 (𝑛) + 𝐵𝑖 (𝑛)⊤ 𝑋𝑡 + 𝐶𝑖 (𝑛)⊤ 𝑍𝑖,𝑡

}
, (A.14)

where 𝐴𝑖 (𝑛), 𝐵𝑖 (𝑛), and 𝐶𝑖 (𝑛) are firm 𝑖-specific, deterministic functions of 𝑛 given by the
recursive equations

𝐵𝑖 (𝑛) =
(
Π⊤ − 𝜃Σ𝜎𝑋

)
𝐵𝑖 (𝑛 − 1) + 𝜙𝑖 − 𝛾 − 𝜃Σ𝜎𝑖,𝐷 . (A.15)

𝐶𝑖 (𝑛) =Ω⊤𝐶𝑖 (𝑛 − 1) + 𝛿𝑖 (A.16)

𝐴𝑖 (𝑛) =𝐴𝑖 (𝑛 − 1) + 𝑔𝑖 − 𝑟 −
(
𝜎𝑖,𝐷 + 𝜎𝑋𝐵𝑖 (𝑛 − 1)

)⊤
Σ𝜆 + 1

2
(
𝜎𝑖,𝐷 + 𝜎𝑋𝐵𝑖 (𝑛 − 1)

)⊤
Σ(

𝜎𝑖,𝐷 + 𝜎𝑋𝐵𝑖 (𝑛 − 1)
)
+ 1

2
(
𝜎𝑖,𝜈 + 𝜎𝑖,𝑍𝐶𝑖 (𝑛 − 1)

)⊤
Σ𝑖

(
𝜎𝑖,𝜈 + 𝜎𝑖,𝑍𝐶𝑖 (𝑛 − 1)

)
. (A.17)

with the initial conditions

𝐴𝑖 (0) = 0, 𝐵𝑖 (0) = 0, and 𝐶𝑖 (0) = 0. (A.18)

The price of firm 𝑖’s stock, 𝑃𝑖,𝑡 , is the sum of all its dividend strips

𝑃𝑖,𝑡

𝐷𝑖,𝑡
=

+∞∑︁
𝑛=1

𝑃𝑛
𝑖,𝑡

𝐷𝑖,𝑡
=

+∞∑︁
𝑛=1

exp
{
𝐴𝑖 (𝑛) + 𝐵𝑖 (𝑛)⊤ 𝑋𝑡 + 𝐶𝑖 (𝑛)⊤ 𝑍𝑖,𝑡

}
. (A.19)

In Appendix I, we use the log-linearization method of Campbell and Shiller (1988) to solve an
approximate exponential-affine form, so the log price-dividend ratio of stock 𝑖 is

ln
(
𝑃𝑖,𝑡

𝐷𝑖,𝑡

)
≈ 𝐴𝑖 + 𝐵⊤

𝑖 𝑋𝑡 + 𝐶⊤
𝑖 𝑍𝑖,𝑡 . (A.20)

Because 𝑍𝑖,𝑡 is independent from 𝑋𝑡 , recovering the state space 𝑋𝑡 using individual stocks’ price-
dividend ratio brings in noise. In a forecasting context, Kelly and Pruitt (2013) deal with this issue
using partial least squares, which is a method to compress the cross-section of valuation ratios into
signals (about the state variables) that are most relevant for the forecasting targets.

I.3 Solving the two-dimensional state space model and Proposition 2
We conjecture that the market price-dividend ratio is exponential-affine in the state variables, so
the log ratio is

𝑝𝑑𝑡 = ln (𝑆𝑡/𝐷𝑡) = 𝐴 + 𝐵𝑦𝑡 + 𝐶𝑧𝑡 .
Next, we use the log-linearization of Campbell and Shiller (1988), i.e.,

𝑟𝑡+1 = 𝜅0 + 𝜅1𝑝𝑑𝑡+1 − 𝑝𝑑𝑡 + Δ𝑑𝑡+1,
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and substitute this log market return into the no-arbitrage condition

E𝑡 [𝑀𝑡+1 exp{𝑟𝑡+1}] = 1.

to obtain

E𝑡

[
exp

{
−𝑟 𝑓 −

1
2
𝜆2
𝑡 (𝜎⊤

𝜆 Σ𝜎𝜆)2 − 𝜆𝑡𝜎⊤
𝜆 𝜖𝑡+1 + 𝜅0 + 𝜅1𝑝𝑑𝑡+1 − 𝑝𝑑𝑡 + Δ𝑑𝑡+1

}]
= 1 (A.21)

Using the conjecture of 𝑝𝑑𝑡 and 𝑝𝑑𝑡+1 and the specification of 𝑔𝑡 and Δ𝑑𝑡+1, we obtain

E𝑡

[
exp

{
1
1
− 𝑟 𝑓 −

1
2
𝜆2
𝑡 (𝜎⊤

𝜆 Σ𝜎𝜆)2 − 𝜆𝑡𝜎⊤
𝜆 𝜖𝑡+1 + 𝜅0 − 𝐴 − 𝐵𝑦𝑡 − 𝐶𝑧𝑡 + 𝑧𝑡 + 𝑔 −

1
2
𝜎⊤
𝐷Σ𝜎𝐷 + 𝜎⊤

𝐷𝜖𝑡+1

+𝜅1𝐴 + 𝜅1𝐵(𝜌𝑦𝑦𝑡 + 𝜎⊤
𝑦 𝜖𝑡+1) + 𝜅1𝐶 (𝜌𝑧𝑧𝑡 + 𝜎⊤

𝑧 𝜖𝑡+1)
1
1

}]
= 1 (A.22)

For the conjecture of 𝑝𝑑𝑡 functional form to hold, the coefficient on 𝑧𝑡 is zero, so we obtain

𝐶 =
1

1 − 𝜅1𝜌𝑧
(A.23)

Collecting all terms with shocks at 𝑡 + 1 and using the moment-generating function, we obtain

E𝑡
[
exp

{
−𝜆𝑡𝜎⊤

𝜆 𝜖𝑡+1 + 𝜎⊤
𝐷𝜖𝑡+1 + 𝜅1𝐵𝜎

⊤
𝑦 𝜖𝑡+1 + 𝜅1𝐶𝜎

⊤
𝑧 𝜖𝑡+1

}]
= exp

{
1
2
𝜆2
𝑡 (𝜎⊤

𝜆 Σ𝜎𝜆)2 (A.24)

−(𝜎𝐷 + 𝜅1𝐵𝜎𝑦 + 𝜅1𝐶𝜎𝑧)⊤Σ𝜎𝜆𝜆𝑡 +
1
2
(𝜎𝐷 + 𝜅1𝐵𝜎𝑦 + 𝜅1𝐶𝜎𝑧)⊤Σ(𝜎𝐷 + 𝜅1𝐵𝜎𝑦 + 𝜅1𝐶𝜎𝑧)

}
Substituting this expression into the no-arbitrage condition, we obtain

exp
{
−𝑟 𝑓 + 𝜅0 − 𝐴 − 𝐵𝑦𝑡 − 𝐶𝑧𝑡 + 𝑧𝑡 + 𝑔 −

1
2
𝜎⊤
𝐷Σ𝜎𝐷 − (𝜎𝐷 + 𝜅1𝐵𝜎𝑦 + 𝜅1𝐶𝜎𝑧)⊤Σ𝜎𝜆 (𝜆 + 𝑦𝑡)

+𝜅1𝐴 + 𝜅1𝐵𝜌𝑦𝑦𝑡 + 𝜅1𝐶𝜌𝑧𝑧𝑡 +
1
2
(𝜎𝐷 + 𝜅1𝐵𝜎𝑦 + 𝜅1𝐶𝜎𝑧)⊤Σ(𝜎𝐷 + 𝜅1𝐵𝜎𝑦 + 𝜅1𝐶𝜎𝑧)

}
= 1 (A.25)

For the conjecture of 𝑝𝑑𝑡 functional form to hold, the coefficient on 𝑦𝑡 is zero, so we obtain

𝐵 = − (𝜎𝐷 + 𝜅1𝐶𝜎𝑧)⊤Σ𝜎𝜆
1 + 𝜅1𝜎

⊤
𝑦 Σ𝜎𝜆 − 𝜅1𝜌𝑦

(A.26)

Finally, all the constant terms should add up to zero, so we obtain

𝐴 =
𝑔 − 𝑟 𝑓 + 𝜅0 − 1

2𝜎
⊤
𝐷
Σ𝜎𝐷 + 1

2 (𝜎𝐷 + 𝜅1𝐵𝜎𝑦 + 𝜅1𝐶𝜎𝑧)⊤Σ(𝜎𝐷 + 𝜅1𝐵𝜎𝑦 + 𝜅1𝐶𝜎𝑧 − 2𝜎𝜆𝜆)
1 − 𝜅1

(A.27)
In the main text, to clarify the notations, we use 𝐴𝑝𝑑 , 𝐵𝑝𝑑 , and 𝐶𝑝𝑑 to denote 𝐴, 𝐵, and 𝐶 above,
respectively.
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Next, we solve the time-𝑡 log price-dividend ratio of the dividend strip that matures at 𝑡 + 1.
The no-arbitrage condition dictates

E𝑡

[
𝑀𝑡+1

𝐷𝑡+1

𝑃1
𝑡

]
= 1, (A.28)

or equivalently

E𝑡

[
𝑀𝑡+1

𝐷𝑡+1
𝐷𝑡

𝐷𝑡

𝑃1
𝑡

]
= E𝑡

[
𝑀𝑡+1 exp

{
𝑔𝑡 + 𝜎⊤

𝐷𝜖𝑡+1 − 𝑠1
𝑡

}]
= 1, (A.29)

so we obtain

E𝑡

[
exp

{
−𝑟 𝑓 −

1
2
𝜆2
𝑡 (𝜎⊤

𝜆 Σ𝜎𝜆)2 − 𝜆𝑡𝜎⊤
𝜆 𝜖𝑡+1 + 𝑔𝑡 + 𝜎⊤

𝐷𝜖𝑡+1 − 𝑠1
𝑡

}]
= 1. (A.30)

We conjecture
𝑠1
𝑡 = 𝐴1 + 𝐵1𝑦𝑡 + 𝐶1𝑧𝑡 .

Substituting this conjecture, the specification of 𝑔𝑡 , and the specification of 𝜆𝑡 into the no-arbitrage
condition, we obtain

E𝑡

[
exp

{
−𝑟 𝑓 −

1
2
(𝜆 + 𝑦𝑡)2(𝜎⊤

𝜆 Σ𝜎𝜆)2 − (𝜆 + 𝑦𝑡)𝜎⊤
𝜆 𝜖𝑡+1

+𝑧𝑡 + 𝑔 −
1
2
𝜎⊤
𝐷Σ𝜎𝐷 + 𝜎⊤

𝐷𝜖𝑡+1 − 𝐴1 − 𝐵1𝑦𝑡 − 𝐶1𝑧𝑡

}]
= 1.

Using the moment-generating function to simplify the expression, we obtain

exp
{
−𝑟 𝑓 + 𝑧𝑡 + 𝑔 − 𝐴1 − 𝐵1𝑦𝑡 − 𝐶1𝑧𝑡 − 𝜎⊤

𝜆 Σ𝜎𝐷 (𝜆 + 𝑦𝑡)
}
= 1. (A.31)

For the conjecture of 𝑠1
𝑡 functional form to hold, the coefficient of 𝑧𝑡 and the coefficient of 𝑦𝑡 must

be zero, so we obtain
𝐶1 = 1, (A.32)

and
𝐵1 = −𝜎⊤

𝜆 Σ𝜎𝐷 . (A.33)

Finally, the constant terms add up to zero, so we obtain

𝐴1 = 𝑔 − 𝑟 𝑓 − 𝜎⊤
𝜆 Σ𝜎𝐷𝜆 (A.34)

Finally, we solve the conditional expected market return. First, we start with E𝑡 [𝑟𝑡+1] =

𝜅0 + 𝜅1E𝑡 [𝑝𝑑𝑡+1] − 𝑝𝑑𝑡 + 𝑔𝑡 . Using the expression of 𝑝𝑑𝑡+1, 𝑝𝑑𝑡 , and 𝑔𝑡 , and the specifications of
law of motion of 𝑧𝑡 and 𝑦𝑡 , we obtain

E𝑡 [𝑟𝑡+1] =𝜅0 − (1 − 𝜅1)𝐴 + 𝑔 − 1
2
𝜎⊤
𝐷Σ𝜎𝐷 − (1 − 𝜅1𝜌𝑦)𝐵𝑦𝑡 . (A.35)
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We collect the constant terms into 𝐴𝑒𝑟 and define the coefficient of 𝑦𝑡 to be 𝐵𝑒𝑟 .

I.4 Proposition 3: 𝜌𝑧 and return forecasting errors
Proof. We know that the expected return is a function of the price of risk 𝑦𝑡 :

E𝑡 [𝑟𝑡+1] = 𝐴𝑒𝑟 + 𝐵𝑒𝑟 𝑦𝑡 ,

and that
𝑑𝑟𝑡 = 𝐴𝑝𝑑 − 𝐴1 + (𝐵𝑝𝑑 − 𝐵1)𝑦𝑡 + (𝐶𝑝𝑑 − 𝐶1)𝑧𝑡 .

Combining the two equations, we have

E𝑡 [𝑟𝑡+1] = 𝐴𝑒𝑟 +
𝐵𝑒𝑟

𝐵1 − 𝐵𝑝𝑑
[
𝑑𝑟𝑡 − 𝐴𝑝𝑑 + 𝐴1 − (𝐶𝑝𝑑 − 𝐶1)𝑧𝑡

]
(A.36)

= const. + 𝐵𝑒𝑟

𝐵1 − 𝐵𝑝𝑑
[
𝑑𝑟𝑡 − (𝐶𝑝𝑑 − 𝐶1)𝑧𝑡

]
(A.37)

If 𝜌𝑧 = 0, E𝑡 [𝑟𝑡+1] = const. + 𝐵𝑒𝑟
𝐵1−𝐵𝑝𝑑 𝑑𝑟𝑡 . The forecast error is a white noise independent of

time-𝑡 variables:
𝜈𝑡+1 = 𝑟𝑡+1 − E𝑡 [𝑟𝑡+1] = 𝜖𝑡+1.

However, if 𝜌𝑧 ≠ 0 but the investor still uses equation (A.37) to forecast 𝑡 + 1 return, the forecast
error is then

𝜈𝑡+1 = 𝑟𝑡+1 −
[
const. + 𝐵𝑒𝑟

𝐵1 − 𝐵𝑝𝑑
𝑑𝑟𝑡

]
= 𝑟𝑡+1 −

[
E𝑡 [𝑟𝑡+1] +

𝐵𝑒𝑟 (𝐶𝑝𝑑 − 𝐶1)
𝐵1 − 𝐵𝑝𝑑

𝑧𝑡

]
= 𝜖𝑡+1 −

𝐵𝑒𝑟 (𝐶𝑝𝑑 − 𝐶1)
𝐵1 − 𝐵𝑝𝑑

𝑧𝑡 = 𝜖𝑡+1 −
𝐵𝑒𝑟

𝐵1 − 𝐵𝑝𝑑

(
1

1 − 𝜅1𝜌𝑧
− 1

)
𝑧𝑡 .

The correlation between 𝜌̂𝑧,𝑡 and 𝜈𝑡+1 is therefore

𝐶𝑜𝑟𝑟 (𝜌𝑧,𝑡 , 𝜈𝑡+1) = − 𝐵𝑒𝑟

𝐵1 − 𝐵𝑝𝑑
𝐶𝑜𝑟𝑟

(
𝜌𝑧,𝑡 ,

(
1

1 − 𝜅1𝜌𝑧,𝑡
− 1

)
𝑧𝑡

)
Based on our findings on return predictability, 𝑑𝑟𝑡 negatively predicts future returns. Therefore, the
coefficient of 𝑑𝑟𝑡 in equation (A.37), 𝐵𝑒𝑟

𝐵1−𝐵𝑝𝑑 , is negative. Under this condition, we obtain

sgn
(
𝐶𝑜𝑟𝑟 (𝜌𝑧,𝑡 , 𝜈𝑡+1)

)
= sgn

(
𝐶𝑜𝑣

(
𝜌𝑧,𝑡 ,

(
1

1 − 𝜅1𝜌𝑧,𝑡
− 1

)
𝑧𝑡

))
= sgn

(
E

(
𝜅1𝜌

2
𝑧,𝑡𝑧𝑡

1 − 𝜅1𝜌𝑧,𝑡

)
− E

(
𝜌𝑧,𝑡

)
E

(
𝜅1𝜌𝑧,𝑡𝑧𝑡

1 − 𝜅1𝜌𝑧,𝑡

))
As demonstrated by the rolling estimation results in Table 6, 𝜌𝑧,𝑡 on average is close to zero (see
also Table 6, we have E

(
𝜌̂𝑧,𝑡

)
≈ 0. Using 1-year earnings growth forecasts from IBES Global

Aggregate (IGA) as a proxy for 𝑧𝑡 and 𝜅1 = 0.98, we calculate the estimate of E
(
𝜅1 𝜌̂

2
𝑧,𝑡 𝑧𝑡

1−𝜅1 𝜌̂𝑧,𝑡

)
in our
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sample to be 0.005626 with 𝑝-value < 0.01, which implies

sgn
(
𝐶𝑜𝑟𝑟 (𝜌𝑧,𝑡 , 𝜈𝑡+1)

)
= sgn

(
E

(
𝜅1𝜌

2
𝑧,𝑡𝑧𝑡

1 − 𝜅1𝜌𝑧,𝑡

))
> 0.

I.5 Deriving the Sharpe ratio of market-timing strategies
Following Campbell and Thompson (2008), we assume that the excess return can be decomposed
as follows:

𝑟𝑡+1 = 𝜇 + 𝑥𝑡 + 𝜀𝑡+1

where 𝜇 is the unconditional mean. The predictor 𝑥𝑡 has mean 0 and variance 𝜎2
𝑥 , independent

from the error term 𝜀𝑡+1. For simplicity, we assume that the mean-variance investor has a relative
risk aversion coefficient 𝛾 = 1. When using 𝑥𝑡 to time the market, the investor allocates

𝛼𝑡 =
𝜇 + 𝑥𝑡
𝜎2
𝜀

to the risky asset and on average earns an excess return of

E (𝛼𝑡𝑟𝑡+1) = E
(
(𝜇 + 𝑥𝑡) (𝜇 + 𝑥𝑡 + 𝜀𝑡+1)

𝜎2
𝜀

)
=
𝜇2 + 𝜎2

𝑥

𝜎2
𝜀

The variance of the market-timing strategy is

Var (𝛼𝑡𝑟𝑡+1) = Var
[
(𝜇 + 𝑥𝑡) (𝜇 + 𝑥𝑡 + 𝜀𝑡+1)

𝜎2
𝜀

]
The (squared) market-timing Sharpe ratio 𝑠2

1 can be written as

𝑠2
1 =

[E (𝛼𝑡𝑟𝑡+1)]2

Var (𝛼𝑡𝑟𝑡+1)
= 𝐴 ·

𝜇2 + 𝜎2
𝑥

𝜎2
𝜀

where 𝐴 is a constant that depends on 𝑉𝑎𝑟 [(𝜇 + 𝑥𝑡) (𝜇 + 𝑥𝑡 + 𝜀𝑡+1)] and (𝜇2 + 𝜎2
𝑥 )/𝜎2

𝜀 .
Given the buy-and-hold Sharpe ratio 𝑠0,

𝑠2
0 =

𝜇2

𝜎2
𝑥 + 𝜎2

𝜀

and the predictive regression 𝑅2,

𝑅2 =
𝜎2
𝑥

𝜎2
𝑥 + 𝜎2

𝜀

,

we obtain the relationship between the buy-and-hold and market-timing Sharpe ratios as

𝑠2
1 = 𝐴 ·

𝜇2 + 𝜎2
𝑥

𝜎2
𝜀

= 𝐴 ·
𝜇2 + 𝜎2

𝑥(
𝜎2
𝑥 + 𝜎2

𝜀

) (
1 − 𝑅2) = 𝐴 ·

𝑠2
0 + 𝑅

2

1 − 𝑅2
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When the predictor has no predictive power, we know that 𝑅2 = 0 and 𝑠0 = 𝑠1. We therefore pin
down the constant 𝐴 = 1 and obtain

𝑠1 =

√︄
𝑠2

0 + 𝑅2

1 − 𝑅2 . (A.38)

Using data back to 1871, Campbell and Thompson (2008) obtain a long-term estimate of the
market buy-and-hold Sharpe ratio (“𝑠0”) of 0.37 (annualized). If a mean-variance investor uses
the information from 𝑑𝑟 to construct a market-timing strategy, with an out-of-sample 𝑅2 of 14.6%,
she would obtain a Sharpe ratio (“𝑠1”) of 0.58, representing a 54.7% improvement over the Sharpe
ratio achieved by the buy-and-hold approach.
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Appendix II: Estimating A State Space Model of Cash Flows

Table A.1 Estimating the Persistence of Expected Cash-Flow Growth (State Space Model)
This table presents the estimation results for four models of dividend growth rates: (1) the unrestricted state-space
model as specified in equations (16) and (17) in Section 3.3; (2) the restricted state-space model with the constraint
𝜌𝑧 = 0; (3) the MA(1) model (Δ𝑑𝑡+1 = 𝑔 + 𝜎𝐷𝜀𝑡+1 + 𝜒𝜎𝐷𝜀𝑡 ); and (4) the AR(1) model (Δ𝑑𝑡+1 = 𝑔 + 𝛾Δ𝑑𝑡 + 𝜎𝐷𝜀𝑡+1).
Panel A reports results using the annual (non-overlapping) dividend growth of the S&P 500 index, while Panel B
reports results using the annual (non-overlapping) dividend growth of the Fama-French market portfolio. For each
model, the log-likelihood (“LogL”), AIC, and BIC are provided. 𝑡-statistics are presented in squared brackets.

𝜌̂𝑧 𝑔̂ 𝜎̂𝑑 𝜎̂𝑧 𝜒̂ 𝛾̂ LogL AIC BIC

Panel A: S&P 500

Unrestricted 0.26 0.06 0.00 0.11 74.44 -140.88 -128.97
[0.94] [3.01] [0.00] [1.70]

Restricted 0.06 0.08 0.08 71.36 -136.72 -127.79
[4.68] [0.00] [0.00]

MA(1) 0.06 0.10 0.41 76.41 -146.82 -137.89
[3.38] [13.45] [6.11]

AR(1) 0.04 0.11 0.26 74.50 -142.99 -134.06
[3.64] [14.90] [3.51]

Panel B: MKT

Unrestricted -0.08 0.06 0.00 0.15 43.96 -79.92 -69.8
[-0.06] [3.86] [0.00] [0.12]

Restricted 0.06 0.11 0.11 43.67 -81.34 -73.8
[3.62] [0.10] [0.10]

MA(1) 0.06 0.15 -0.09 44.00 -82.00 -74.4
[3.94] [6.99] [-1.02]

AR(1) 0.06 0.15 -0.08 43.96 -81.93 -74.39
[3.89] [6.98] [-0.87]

An alternative method to estimate 𝜌𝑧 is to directly estimate the state-space model given by
equations (16) and (17) with the realized dividend data. Using the standard Kalman filter, we
obtain estimates of 𝜌𝑧. For comparison, we report results for both the S&P 500 index and the
Fama-French market portfolio (“MKT”). We obtain dividend data for the Fama-French market
portfolio (the CRSP NYSE/NYSEMKT/Nasdaq Value-Weighted Market Index). Since the model
is set up at annual frequency, we use annual (non-overlapping) dividend growth data. The sample
spans 1926 to 2019.35 The results are reported in Table A.1, where Panel A and B are for S&P
500 and MKT, respectively. In the row “Unrestricted” of Panel A and B of Table A.1, the estimates
of 𝜌̂𝑧 are statistically indistinguishable from zero.36 The restricted model with 𝜌𝑧 = 0 generates
similar likelihood and information criteria, indicating that allowing 𝜌𝑧 to be a free parameter does not
significantly improve the model fitness. We also estimate MA(1) and AR(1) models for comparison

35We also used the longest available S&P 500 dividend series starting from 1872 and obtained similar results. The
results are available upon request.

36The Kalman filter assumes that the shocks to realized and expected dividend growth are uncorrelated. In Figure
A.1, we demonstrate the robustness of our estimate of 𝜌𝑧 by considering different values of the correlation, from -0.9
to 0.9, while fixing the volatility of realized-dividend shock at the estimate in Panel A of Table A.1. The estimated 𝜌𝑧
barely moves with the value of shock correlations in [−0.9, 0.9].
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Figure A.1 𝜌𝑧 Estimates from the State-Space Model with Correlated Shocks
This figure presents the estimated values of the expected dividend growth autoregressive coefficient (𝜌𝑧) in unrestricted
state-space models, as discussed in Section 3.3, with varying correlations between theΔ𝑑 and 𝑧 shocks. The correlations
range from -0.9 to 0.9, and the volatility of the Δ𝑑 shock is adjusted to match the estimated 𝜎̂𝐷 from the state-space
model with uncorrelated shocks. Panel A uses the annual (non-overlapping) dividend growth of the S&P 500 index,
and Panel B uses the annual (non-overlapping) dividend growth of the Fama-French market portfolio.

and find that the estimates of the autoregressive coefficient, i.e., 𝜒 and 𝛾 for MA(1) and AR(1),
respectively, are statistically indistinguishable from zero. In sum, the state-space approach delivers
a similar message as the estimation based on analyst forecasts: The autoregressive coefficient of
expected cash-flow growth rate is close to zero.
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Appendix III: Additional Tables and Figures

Table A.2 Predicting Earnings Growth with Analyst Forecasts: By Month of the Quarter
This table reports the results of regressions that predict earnings growth at various horizons with analyst forecasts, with
the regression samples separated by month of a quarter to highlight the effect of information supply. The dependent
variables are realized earnings growth from IGA of next year, year after next, the third year into the future, and the
average earnings growth between years 3 to 5. The independent variables are analysts’ forecasts of one-year earnings
growth between 𝑡 + 𝜏 and 𝑡 + 𝜏 + 1 across horizons (E𝐴𝑡 [Δ𝑒𝑡+𝜏+1], for 𝜏 = 0, 1, 2) from IGA and the self-aggregated
long-term earnings growth forecasts (𝐿𝑇𝐺𝑡 ) of the S&P 500 Index. The 𝑡-statistics are calculated based on Newey-West
standard errors with 18 lags are reported in parentheses.

Δ𝑒𝑡+1 Δ𝑒𝑡+2 Δ𝑒𝑡+3 Δ𝑒𝑡+2,𝑡+5

(1) (2) (3) (4)

Panel A: First month of the quarter

Intercept -0.048 -0.099 -0.134 0.019
(-4.056) (-2.491) (-1.883) (0.236)

E𝐴𝑡 [Δ𝑒𝑡+1] 1.184
(21.935)

E𝐴𝑡 [Δ𝑒𝑡+2] 1.168
(4.078)

E𝐴𝑡 [Δ𝑒𝑡+3] 1.503
(3.045)

𝐿𝑇𝐺𝑡 0.373
(0.587)

𝑁 128 128 128 122
𝑅2 0.78 0.18 0.15 0.01

Panel B: Second month of the quarter

Intercept -0.059 -0.128 -0.107 -0.001
(-4.020) (-2.430) (-1.408) (-0.015)

E𝐴𝑡 [Δ𝑒𝑡+1] 1.202
(17.752)

E𝐴𝑡 [Δ𝑒𝑡+2] 1.346
(3.801)

E𝐴𝑡 [Δ𝑒𝑡+3] 1.340
(2.588)

𝐿𝑇𝐺𝑡 0.541
(0.855)

𝑁 128 128 128 122
𝑅2 0.69 0.18 0.12 0.02

Panel C: Third month of the quarter

Intercept -0.056 -0.125 -0.119 0.011
(-4.024) (-2.485) (-1.532) (0.147)

E𝐴𝑡 [Δ𝑒𝑡+1] 1.209
(19.611)

E𝐴𝑡 [Δ𝑒𝑡+2] 1.318
(3.852)

E𝐴𝑡 [Δ𝑒𝑡+3] 1.428
(2.694)

𝐿𝑇𝐺𝑡 0.439
(0.696)

𝑁 128 128 128 122
𝑅2 0.72 0.18 0.13 0.01
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Table A.3 Forecasting Earnings Growth Across Horizons: Controlling for Extrapolation
This table reports the results of regressions that predict earnings growth at various horizons. The dependent variables
are realized earnings growth from IGA of next year, the year after, and the third year in the future, and the average
earnings growth rate between years 3 to 5. The independent variables are analysts’ forecasts of one-year earnings
growth between 𝑡 + 𝜏 and 𝑡 + 𝜏 + 1 across horizons (E𝐴𝑡 [Δ𝑒𝑡+𝜏+1], for 𝜏 = 0, 1, 2) from IGA, the self-aggregated
long-term earnings growth forecasts (𝐿𝑇𝐺𝑡 ) of the S&P 500 Index, and the lagged realized earnings growth (Δ𝑒𝑡−1,𝑡 ).
𝑡-statistics calculated based on Newey-West standard errors with 18 lags are reported in parentheses.

Δ𝑒𝑡+1 Δ𝑒𝑡+2 Δ𝑒𝑡+3 Δ𝑒𝑡+2,𝑡+5

(1) (2) (3) (4) (5) (6) (7) (8)

Intercept -0.056 -0.059 -0.097 -0.033 -0.149 -0.072 0.004 0.014
(-4.127) (-3.936) (-2.063) (-0.643) (-2.130) (-0.779) (0.047) (0.163)

E𝐴𝑡 [Δ𝑒𝑡+1] 1.204 1.189
(20.101) (19.936)

E𝐴𝑡 [Δ𝑒𝑡+2] 1.164 0.798
(3.683) (2.483)

E𝐴𝑡 [Δ𝑒𝑡+3] 1.598 1.119
(3.342) (1.894)

𝐿𝑇𝐺𝑡 0.486 0.541
(0.717) (0.782)

Δ𝑒𝑡 0.075 -0.210 -0.199 -0.228
(0.992) (-1.671) (-1.683) (-3.389)

𝑁 372 372 360 360 348 348 324 324
𝑅22 0.73 0.74 0.15 0.19 0.21 0.23 0.01 0.20
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Table A.4 Forecast Horizons of Popular Macroeconomic Surveys
This table summarizes the forecast horizons (in quarters) of several major surveys that cover macroeconomic variables such as GDP growth, unemployment rate and
industrial production.

Survey Survey Start Year Macro Variable Survey Frequency Maximal forecast horizon

Blue Chip Economic Indicators 1976 Real GDP growth, Unemployment rate, Industrial production Monthly ∼4-5 quarters
Survey of Professional Forecasters 1968 Real GDP growth, Unemployment rate Quarterly Quarterly: 4 quarters

Annual: 3 years
Livingston Survey 1946 Real GDP growth, Unemployment rate Semi-annually ∼4-5 quarters
Consensus Economics 1989 Real GDP growth, Unemployment rate Monthly 6 quarters
Wall Street Journal Economic Survey 2008 Real GDP growth (annual and quarterly), Unemployment rate Monthly Quarterly GDP: 6 quarters

Annual: 3 years
Federal Reserve Summary of Economic Projections 2007 Real GDP growth, Unemployment rate Quarterly 3 years
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Table A.5 Predicting Dividend Growth Using Different Combinations of Valuation Ratios
This table reports regression results for predicting one-year S&P 500 Index dividend growth using various predictors
and sets of valuation ratios. 𝑡-statistics based on Newey-West standard errors with autocorrelation of up to 18 lags are
reported in parentheses. Data sample: 1988:01–2019:12. See Figure 4 for a detailed definition of each variable.

Δ𝑑𝑡+1

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16)

𝑑𝑟𝑡 -0.18∗∗∗ -0.04∗∗
(0.05) (0.02)

𝑝𝑑𝑡 0.29∗∗∗ 0.02 0.07 0.10∗ 7.93∗∗ 0.10∗ 4.24 2.26 2.15
(0.11) (0.05) (0.06) (0.06) (3.65) (0.06) (3.34) (2.86) (2.90)

𝑔𝐹𝑡 0.68∗∗∗
(0.25)

𝐾𝑃𝐶𝐹𝑡 0.22
(0.14)

𝑠0.5
𝑡 0.03 0.14∗∗∗ 0.14∗∗∗ 0.02 0.02 0.10∗∗ 0.01

(0.03) (0.05) (0.05) (0.03) (0.03) (0.04) (0.03)
𝑠1
𝑡 0.10∗∗∗ 0.18∗∗∗ 0.18∗∗∗ 0.16∗∗∗ 0.16∗∗∗ 0.15∗∗∗ 0.15∗∗∗

(0.03) (0.06) (0.05) (0.06) (0.06) (0.04) (0.04)
𝑠1+
𝑡 0.07 0.10∗ -7.69∗∗ 0.10∗ -4.07 -2.11 -2.00

(0.05) (0.06) (3.53) (0.05) (3.23) (2.76) (2.80)

𝑁 372 372 372 372 372 372 372 372 372 372 372 372 372 372 372 372
𝑅2 0.395 0.062 0.004 0.324 0.040 0.255 0.270 0.383 0.271 0.384 0.231 0.385 0.386 0.310 0.394 0.394
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Table A.6 Predicting Returns Using Different Combinations of Valuation Ratios
This table reports regression results for predicting one-year S&P 500 Index returns using various predictors and sets
of valuation ratios. 𝑡-statistics based on Newey-West standard errors with autocorrelation of up to 18 lags are reported
in parentheses. Data sample: 1988:01–2019:12. See Figure 5 for a detailed definition of each variable.

𝑟𝑡+1

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15)

𝑑𝑟𝑡 -0.16∗∗∗
(0.03)

𝑝𝑑𝑡 -0.20∗∗∗ -0.13∗∗ -0.09 7.54 -0.09 1.18 -1.41 -1.87
(0.07) (0.06) (0.07) (4.58) (0.07) (4.38) (4.03) (3.70)

𝜇𝐹𝑡 2.58∗∗∗
(0.92)

𝐾𝑃𝑡 0.90∗∗∗
(0.31)

𝑠0.5
𝑡 0.03 0.18∗∗∗ 0.18∗∗∗ 0.03 0.03 0.17∗∗ 0.04

(0.09) (0.06) (0.06) (0.09) (0.09) (0.07) (0.09)
𝑠1
𝑡 0.25∗∗∗ 0.23∗∗∗ 0.23∗∗∗ 0.20∗∗ 0.20∗∗ 0.24∗∗∗ 0.21∗∗

(0.09) (0.06) (0.06) (0.10) (0.10) (0.06) (0.11)
𝑠1+
𝑡 -0.13∗∗ -0.09 -7.53∗ -0.09 -1.28 1.29 1.74

(0.06) (0.07) (4.46) (0.07) (4.25) (3.92) (3.59)

𝑁 372 372 372 372 372 372 372 372 372 372 372 372 372 372 372
𝑅2 0.248 0.138 0.156 0.149 0.245 0.230 0.265 0.230 0.265 0.183 0.266 0.266 0.231 0.266 0.268
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Table A.7 Kostakis, Magdalinos, and Stamatogiannis (2014) IVX-Wald Test
This table presents results of the IVX-Wald test proposed by Kostakis, Magdalinos, and Stamatogiannis (2014) on the
predictive coefficient 𝛽 in Table (5). IVX-Wald is the Wald statistic to test 𝐻0 : 𝛽 = 0 against 𝐻1 : 𝛽 ≠ 0. The test is
designed to be robust to the persistence of the predictor. 𝑝-value of the IVX-Wald test is provided in the parentheses.
*, **, and *** indicate significance at the 10%, 5%, and 1% levels, respectively.

𝑑𝑟𝑡 𝑝𝑑𝑡 𝜇𝐹𝑡 𝐾𝑃𝑡

IVX-Wald 9.29∗∗∗ 1.56 2.77∗ 5.74∗∗
𝑝-value (0.002) (0.212) (0.096) (0.017)
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Table A.8 Predicting Annual Excess Return
This table presents the results of the predictive regression specified in equation (27). The dependent variable is the
log excess return of the S&P 500 index over the next twelve months, 𝑟𝑒

𝑡+1. The predictors include: the slope of the
term structure of valuation ratios 𝑑𝑟𝑡 , the price-dividend ratio 𝑝𝑑𝑡 , the filtered series for expected returns following
Binsbergen and Koijen (2010) 𝜇𝐹𝑡 , and the single predictive factor extracted from 100 book-to-market and size portfolios
as per Kelly and Pruitt (2013) 𝐾𝑃𝑡 . For each predictor, the table reports the raw 𝛽 estimate followed by the Hodrick
(1992) 𝑡-statistic, and the Newey and West (1987) 𝑡-statistic (with 18 lags). Starting from January 1998, we generate
out-of-sample forecasts by estimating the regression using data up to the current month. These forecasts are then used
to compute the out-of-sample 𝑅2, and the 𝑝-values of ENC test (Clark and McCracken, 2001) and CW test (Clark and
West, 2007).

𝑟𝑒
𝑡+1

(1) (2) (3) (4) (5)

𝑑𝑟𝑡 -0.146 -0.228
Hodrick t [-3.178] [-2.945]
Newey-West t (-3.867) (-3.571)

𝑝𝑑𝑡 -0.180 0.161
[-2.168] [1.820]
(-2.262) (1.286)

𝜇𝐹𝑡 2.293
[2.033]
(2.205)

𝐾𝑃𝑡 0.827
[2.715]
(2.429)

𝑁 372 372 372 372 372
𝑅2 0.219 0.114 0.124 0.128 0.241
OOS 𝑅2 0.098 -0.040 -0.096 0.005 0.138
ENC 1.924 0.296 0.021 2.175 4.539
𝑝(𝐸𝑁𝐶) <0.10 >0.10 >0.10 <0.05 <0.05
𝑝(𝐶𝑊) 0.058 0.379 0.493 0.072 0.028
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Table A.9 Predicting Annual Return: Fama-French Market Return
This table presents the results of the predictive regression specified in equation (27). The dependent variable is the
log market return from Fama-French in the next twelve months, 𝑟𝑀𝐾𝑇

𝑡+1 . The predictors include: the slope of the
term structure of valuation ratios 𝑑𝑟𝑡 , the price-dividend ratio 𝑝𝑑𝑡 , the filtered series for expected returns following
Binsbergen and Koijen (2010) 𝜇𝐹𝑡 , and the single predictive factor extracted from 100 book-to-market and size portfolios
as per Kelly and Pruitt (2013) 𝐾𝑃𝑡 . For each predictor, the table reports the raw 𝛽 estimate followed by the Hodrick
(1992) 𝑡-statistic, and the Newey and West (1987) 𝑡-statistic (with 18 lags). Starting from January 1998, we generate
out-of-sample forecasts by estimating the regression using data up to the current month. These forecasts are then used
to compute the out-of-sample 𝑅2, and the 𝑝-values of ENC test (Clark and McCracken, 2001) and CW test (Clark and
West, 2007).

𝑟𝑀𝐾𝑇
𝑡+1

(1) (2) (3) (4) (5)

𝑑𝑟𝑡 -0.154 -0.222
Hodrick t [-3.233] [-2.772]
Newey-West t (-4.464) (-3.511)

𝑝𝑑𝑡 -0.198 0.133
[-2.302] [1.608]
(-2.706) (1.129)

𝜇𝐹𝑡 2.486
[2.327]
(2.656)

𝐾𝑃𝑡 0.794
[2.223]
(2.689)

𝑁 372 372 372 372 372
𝑅2 0.236 0.134 0.141 0.128 0.251
OOS 𝑅2 0.144 0.022 -0.023 -0.001 0.181
ENC 3.083 0.963 0.598 2.483 6.163
𝑝(𝐸𝑁𝐶) <0.05 >0.10 >0.10 <0.05 <0.01
𝑝(𝐶𝑊) 0.017 0.166 0.321 0.048 0.019
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Table A.10 Predicting Annual Return: Fama-French Market Excess Return
This table presents the results of the predictive regression specified in equation (27). The dependent variable is the
log market excess return from Fama-French in the next twelve months, 𝑟𝑀𝐾𝑇,𝑒

𝑡+1 . The predictors include: the slope
of the term structure of valuation ratios 𝑑𝑟𝑡 , the price-dividend ratio 𝑝𝑑𝑡 , the filtered series for expected returns
following Binsbergen and Koijen (2010) 𝜇𝐹𝑡 , and the single predictive factor extracted from 100 book-to-market and
size portfolios as per Kelly and Pruitt (2013) 𝐾𝑃𝑡 . For each predictor, the table reports the raw 𝛽 estimate followed by
the Hodrick (1992) 𝑡-statistic, and the Newey and West (1987) 𝑡-statistic (with 18 lags). Starting from January 1998,
we generate out-of-sample forecasts by estimating the regression using data up to the current month. These forecasts
are then used to compute the out-of-sample 𝑅2, and the 𝑝-values of ENC test (Clark and McCracken, 2001) and CW
test (Clark and West, 2007).

𝑟
𝑀𝐾𝑇,𝑒

𝑡+1

(1) (2) (3) (4) (5)

𝑑𝑟𝑡 -0.144 -0.222
Hodrick t [-3.060] [-2.791]
Newey-West t (-3.745) (-3.503)

𝑝𝑑𝑡 -0.179 0.153
[-2.108] [1.704]
(-2.199) (1.202)

𝜇𝐹𝑡 2.192
[2.075]
(2.057)

𝐾𝑃𝑡 0.725
[2.044]
(2.251)

𝑁 372 372 372 372 372
𝑅2 0.206 0.108 0.109 0.105 0.225
OOS 𝑅2 0.099 -0.018 -0.081 -0.037 0.140
ENC 2.000 0.376 -0.047 1.700 4.656
𝑝(𝐸𝑁𝐶) <0.10 >0.10 >0.10 <0.10 <0.05
𝑝(𝐶𝑊) 0.047 0.349 0.485 0.120 0.027
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Table A.11 Monthly Return Prediction
This table presents the results of the predictive regression specified in equation (27). The dependent variable is the
log return of the S&P 500 index over the next months, 𝑟𝑡+1/12. The predictors include: the slope of the term structure
of valuation ratios 𝑑𝑟𝑡 , the price-dividend ratio 𝑝𝑑𝑡 , the filtered series for expected returns following Binsbergen
and Koijen (2010) 𝜇𝐹𝑡 , and the single predictive factor extracted from 100 book-to-market and size portfolios as per
Kelly and Pruitt (2013) 𝐾𝑃𝑡 . For each predictor, the table reports the raw 𝛽 estimate followed by the Hodrick (1992)
𝑡-statistic, and the Newey and West (1987) 𝑡-statistic (with 7 lags). Starting from January 1998, we generate out-of-
sample forecasts by estimating the regression using data up to the current month. These forecasts are then used to
compute the out-of-sample 𝑅2, and the 𝑝-values of ENC test (Clark and McCracken, 2001) and CW test (Clark and
West, 2007).

𝑟𝑡+1/12

(1) (2) (3) (4) (5)

𝑑𝑟𝑡 -0.012 -0.017
Hodrick t [-2.529] [-1.427]
Newey-West t (-2.826) (-2.034)

𝑝𝑑𝑡 -0.015 0.011
[-1.891] [0.530]
(-2.090) (0.751)

𝜇𝐹𝑡 0.211
[2.224]
(2.401)

𝐾𝑃𝑡 0.019
[0.656]
(0.680)

𝑁 383 383 383 383 383
𝑅2 0.021 0.011 0.015 0.001 0.022
OOS 𝑅2 0.015 0.004 0.007 -0.012 0.005
ENC 2.678 1.122 1.673 -0.676 2.384
𝑝(𝐸𝑁𝐶) <0.05 >0.10 <0.10 >0.10 <0.10
𝑝(𝐶𝑊) 0.018 0.179 0.122 0.325 0.129
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Table A.12 Monthly Excess Return Prediction
This table presents the results of the predictive regression specified in equation (27). The dependent variable is the log
excess return of the S&P 500 index over the next months, 𝑟𝑒

𝑡+1/12. The predictors include: the slope of the term structure
of valuation ratios 𝑑𝑟𝑡 , the price-dividend ratio 𝑝𝑑𝑡 , the filtered series for expected returns following Binsbergen and
Koijen (2010) 𝜇𝐹𝑡 , and the single predictive factor extracted from 100 book-to-market and size portfolios as per Kelly
and Pruitt (2013) 𝐾𝑃𝑡 . For each predictor, the table reports the raw 𝛽 estimate followed by the Hodrick (1992)
𝑡-statistic, and the Newey and West (1987) 𝑡-statistic (with 7 lags). Starting from January 1998, we generate out-of-
sample forecasts by estimating the regression using data up to the current month. These forecasts are then used to
compute the out-of-sample 𝑅2, and the 𝑝-values of ENC test (Clark and McCracken, 2001) and CW test (Clark and
West, 2007).

𝑟𝑒
𝑡+1/12

(1) (2) (3) (4) (5)

𝑑𝑟𝑡 -0.011 -0.018
Hodrick t [-2.394] [-1.504]
Newey-West t (-2.684) (-2.134)

𝑝𝑑𝑡 -0.014 0.014
[-1.687] [0.670]
(-1.873) (0.944)

𝜇𝐹𝑡 0.188
[1.967]
(2.137)

𝐾𝑃𝑡 0.015
[0.514]
(0.535)

𝑁 383 383 383 383 383
𝑅2 0.019 0.009 0.012 0.001 0.021
OOS 𝑅2 0.012 0.001 0.003 -0.013 0.003
ENC 2.338 0.670 1.060 -0.766 2.233
𝑝(𝐸𝑁𝐶) <0.05 >0.10 >0.10 >0.10 <0.10
𝑝(𝐶𝑊) 0.038 0.283 0.228 0.302 0.159
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Table A.13 Monthly Return Prediction: Fama-French MKT Return
This table presents the results of the predictive regression specified in equation (27). The dependent variable is the
log market return from Fama-French in the next month, 𝑟𝑀𝐾𝑇

𝑡+1/12. The predictors include: the slope of the term structure
of valuation ratios 𝑑𝑟𝑡 , the price-dividend ratio 𝑝𝑑𝑡 , the filtered series for expected returns following Binsbergen
and Koijen (2010) 𝜇𝐹𝑡 , and the single predictive factor extracted from 100 book-to-market and size portfolios as per
Kelly and Pruitt (2013) 𝐾𝑃𝑡 . For each predictor, the table reports the raw 𝛽 estimate followed by the Hodrick (1992)
𝑡-statistic, and the Newey and West (1987) 𝑡-statistic (with 7 lags). Starting from January 1998, we generate out-of-
sample forecasts by estimating the regression using data up to the current month. These forecasts are then used to
compute the out-of-sample 𝑅2, and the 𝑝-values of ENC test (Clark and McCracken, 2001) and CW test (Clark and
West, 2007).

𝑟𝑀𝐾𝑇
𝑡+1/12

(1) (2) (3) (4) (5)
𝑑𝑟𝑡 -0.012 -0.017

Hodrick t [-2.354] [-1.330]
Newey-West t (-2.742) (-1.945)

𝑝𝑑𝑡 -0.015 0.011
[-1.819] [0.488]
(-2.044) (0.697)

𝜇𝐹𝑡 0.208
[2.091]
(2.306)

𝐾𝑃𝑡 0.018
[0.588]
(0.626)

𝑁 383 383 383 383 383
𝑅2 0.019 0.011 0.014 0.001 0.021
OOS 𝑅2 0.012 0.003 0.005 -0.014 0.003
ENC 2.227 0.876 1.275 -1.009 1.869
𝑝(𝐸𝑁𝐶) <0.05 >0.10 <0.10 >0.10 >0.10
𝑝(𝐶𝑊) 0.034 0.220 0.171 0.220 0.176
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Table A.14 Monthly Return Prediction: Fama-French MKT excess Return
This table presents the results of the predictive regression specified in equation (27). The dependent variable is the
log excess market return from Fama-French in the next month, 𝑟𝑀𝐾𝑇,𝑒

𝑡+1/12 . The predictors include: the slope of the
term structure of valuation ratios 𝑑𝑟𝑡 , the price-dividend ratio 𝑝𝑑𝑡 , the filtered series for expected returns following
Binsbergen and Koijen (2010) 𝜇𝐹𝑡 , and the single predictive factor extracted from 100 book-to-market and size portfolios
as per Kelly and Pruitt (2013) 𝐾𝑃𝑡 . For each predictor, the table reports the raw 𝛽 estimate followed by the Hodrick
(1992) 𝑡-statistic, and the Newey and West (1987) 𝑡-statistic (with 7 lags). Starting from January 1998, we generate
out-of-sample forecasts by estimating the regression using data up to the current month. These forecasts are then used
to compute the out-of-sample 𝑅2, and the 𝑝-values of ENC test (Clark and McCracken, 2001) and CW test (Clark and
West, 2007).

𝑟
𝑀𝐾𝑇,𝑒

𝑡+1/12

(1) (2) (3) (4) (5)

𝑑𝑟𝑡 -0.011 -0.018
Hodrick t [-2.228] [-1.402]
Newey-West t (-2.602) (-2.042)

𝑝𝑑𝑡 -0.014 0.013
[-1.621] [0.623]
(-1.830) (0.885)

𝜇𝐹𝑡 0.185
[1.844]
(2.049)

𝐾𝑃𝑡 0.014
[0.453]
(0.484)

𝑁 383 383 383 383 383
𝑅2 0.017 0.009 0.011 0.001 0.019
OOS 𝑅2 0.010 0.000 0.001 -0.014 0.001
ENC 1.903 0.443 0.699 -1.082 1.718
𝑝(𝐸𝑁𝐶) <0.10 >0.10 >0.10 >0.10 >0.10
𝑝(𝐶𝑊) 0.065 0.340 0.297 0.205 0.209
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Table A.15 Return Spanning Test: 𝑑𝑟
The table presents the results of the following return spanning test:

𝑟𝑡+1 = 𝛼 + 𝛽𝑑𝑟𝑡 + 𝛾𝑥𝑡 + 𝜖𝑡+1.

The dependent variable is the log return of the S&P 500 Index over the next twelve months, 𝑟𝑡+1. 𝑥𝑡 denotes an alternative return predictor. Detailed definitions and
the sample period for each variable can be found in Figure 7. 𝑡-statistics, based on Newey-West standard errors with autocorrelation adjustments up to 18 lags, are
provided in parentheses. Constant terms are omitted for brevity.

𝑟𝑡+1

𝑥 = 𝑝𝑑 𝐾𝑃 𝜇𝐹 bm dy tbl lty ntis infl ltr svar
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

𝑑𝑟𝑡 -0.228∗∗∗ -0.130∗∗∗ -0.223∗∗∗ -0.185∗∗∗ -0.228∗∗∗ -0.159∗∗∗ -0.169∗∗∗ -0.151∗∗∗ -0.160∗∗∗ -0.156∗∗∗ -0.160∗∗∗
(0.065) (0.035) (0.076) (0.049) (0.064) (0.035) (0.037) (0.032) (0.035) (0.035) (0.035)

𝑥𝑡 0.141 0.307 -1.571 -0.207 -0.140 -0.387 -0.903 1.524 -7.034∗∗ 0.202 2.885∗∗
(0.117) (0.247) (1.709) (0.357) (0.114) (0.616) (0.730) (1.356) (3.351) (0.166) (1.463)

𝑁 372 372 372 372 372 372 372 372 372 372 372
𝑅2 0.264 0.259 0.259 0.253 0.263 0.251 0.259 0.289 0.269 0.249 0.254

𝑥 = csp ep de dfy dfr tms cay ik SII SVIX 𝑑𝑝𝐶𝑜𝑟𝑟

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

𝑑𝑟𝑡 -0.149∗∗∗ -0.159∗∗∗ -0.157∗∗∗ -0.156∗∗∗ -0.155∗∗∗ -0.160∗∗∗ -0.169∗∗∗ -0.178∗∗∗ -0.150∗∗∗ -0.221∗∗∗ -0.209∗∗∗
(0.033) (0.040) (0.035) (0.035) (0.034) (0.036) (0.047) (0.050) (0.038) (0.045) (0.072)

𝑥𝑡 37.581∗ -0.192 -0.007 -0.282 0.421 -0.578 -0.351 2.796 -0.062∗∗∗ 1.373∗∗ 0.011
(21.626) (1.316) (0.046) (4.930) (0.545) (1.352) (1.034) (10.797) (0.023) (0.644) (0.090)

𝑁 180 372 372 372 372 372 124 124 324 193 210
𝑅2 0.380 0.248 0.248 0.248 0.249 0.250 0.248 0.248 0.408 0.293 0.304
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Table A.16 Return Spanning Test: 𝑑𝑟 and 𝑝𝑑
The table presents the results of the following return spanning test:

𝑟𝑡+1 = 𝛼 + 𝛽1𝑑𝑟𝑡 + 𝛽2𝑝𝑑𝑡 + 𝛾𝑥𝑡 + 𝜖𝑡+1.

The dependent variable is the log return of the S&P 500 Index over the next twelve months, 𝑟𝑡+1. 𝑥𝑡 denotes an alternative return predictor. Detailed definitions and
the sample period for each variable can be found in Figure 7. 𝑡-statistics, based on Newey-West standard errors with autocorrelation adjustments up to 18 lags, are
provided in parentheses. Constant terms are omitted for brevity.

𝑟𝑡+1

𝑥 = 𝐾𝑃 𝜇𝐹 bm dy tbl lty ntis infl ltr svar csp
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

𝑝𝑑𝑡 0.139 0.146 0.139 0.127 0.134 0.121 0.082 0.146 0.148 0.204 0.127
(0.113) (0.273) (0.130) (0.195) (0.127) (0.130) (0.130) (0.114) (0.119) (0.125) (0.146)

𝑑𝑟𝑡 -0.202∗∗∗ -0.227∗∗∗ -0.228∗∗∗ -0.228∗∗∗ -0.226∗∗∗ -0.228∗∗∗ -0.194∗∗∗ -0.235∗∗∗ -0.231∗∗∗ -0.267∗∗∗ -0.211∗∗∗
(0.063) (0.074) (0.068) (0.064) (0.068) (0.067) (0.058) (0.067) (0.066) (0.076) (0.056)

𝑥𝑡 0.299 0.072 -0.013 -0.015 -0.241 -0.699 1.355 -7.215∗ 0.289∗ 5.377∗∗∗ 31.269
(0.261) (3.804) (0.428) (0.159) (0.639) (0.824) (1.368) (3.737) (0.175) (1.831) (21.220)

𝑁 372 372 372 372 372 372 372 372 372 372 180
𝑅2 0.275 0.264 0.264 0.264 0.266 0.271 0.294 0.286 0.267 0.284 0.393

𝑥 = ep de dfy dfr tms cay ik SII SVIX 𝑑𝑝𝐶𝑜𝑟𝑟

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

𝑝𝑑𝑡 0.144 0.182 0.169 0.140 0.143 0.188 0.187 0.097 0.175 0.031
(0.117) (0.151) (0.110) (0.116) (0.118) (0.131) (0.129) (0.139) (0.266) (0.154)

𝑑𝑟𝑡 -0.235∗∗∗ -0.243∗∗∗ -0.240∗∗∗ -0.227∗∗∗ -0.233∗∗∗ -0.270∗∗∗ -0.272∗∗∗ -0.199∗∗∗ -0.286∗∗ -0.215∗∗
(0.073) (0.076) (0.063) (0.064) (0.066) (0.076) (0.074) (0.066) (0.112) (0.084)

𝑥𝑡 -0.343 0.029 2.412 0.358 -0.631 -0.261 1.191 -0.060∗∗∗ 2.042 0.023
(1.492) (0.060) (5.439) (0.489) (1.283) (0.964) (9.805) (0.021) (1.436) (0.084)

𝑁 372 372 372 372 372 124 124 324 193 210
𝑅2 0.265 0.268 0.267 0.266 0.267 0.271 0.271 0.416 0.307 0.305
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Figure A.2 In-Sample and Out-of-Sample 𝑅2 Wedge between 𝑑𝑟 and Other Return Predictors: Excess
Return
This figure compares annual return predictive 𝑅2 between 𝑑𝑟𝑡 and other commonly studied predictors. The forecast
target is the annual log excess return of the S&P 500 Index. Panels A and B report, respectively, the differences in
in-sample (IS) and out-of-sample (OOS) 𝑅2 between 𝑑𝑟 and an alternative predictor. A positive value signifies that 𝑑𝑟
has a stronger predictive power than the alternative within the same sample period. Most predictors are from Goyal
and Welch (2007) and include the price-dividend ratio (pd), the default yield spread (dfy), the inflation rate (infl), stock
variance (svar), the cross-section premium (csp, available in 1988-2002), the dividend payout ratio (de), the long-term
yield (lty), the term spread (tms), the T-bill rate (tbl), the default return spread (dfr), the dividend yield (dy), the long-
term rate of return (ltr), the earnings-to-price ratio (ep), the book to market ratio (bm), the investment-to-capital ratio
(ik), the net equity expansion ratio (ntis), the percent equity issuing ratio (eqis), and the consumption-wealth-income
ratio (cay). KP is the predictive factor extracted from 100 book-to-market and size portfolios from Kelly and Pruitt
(2013). 𝑑𝑝𝐶𝑜𝑟𝑟 is the dividend-price ratio corrected for option-implied dividend growth in Golez (2014) (available in
1994-2011). 𝜇𝐹 is the filtered series for expected returns following Binsbergen and Koijen (2010). SII is the short
interests index from Rapach, Ringgenberg, and Zhou (2016) (available in 1988-2014). SVIX is an option-implied
lower bound of annual equity premium in Martin (2017) (available in 1996-2012).
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Figure A.3 In-Sample and Out-of-Sample 𝑅2 Wedge between 𝑑𝑟 and Other Return Predictors: Fama-
French Market Return
This figure compares annual return predictive 𝑅2 between 𝑑𝑟𝑡 and other commonly studied predictors. The forecast
target is the annual log market return from Fama-French. Panels A and B report, respectively, the differences in
in-sample (IS) and out-of-sample (OOS) 𝑅2 between 𝑑𝑟 and an alternative predictor. A positive value signifies that 𝑑𝑟
has a stronger predictive power than the alternative within the same sample period. Most predictors are from Goyal
and Welch (2007) and include the price-dividend ratio (pd), the default yield spread (dfy), the inflation rate (infl), stock
variance (svar), the cross-section premium (csp, available in 1988-2002), the dividend payout ratio (de), the long-term
yield (lty), the term spread (tms), the T-bill rate (tbl), the default return spread (dfr), the dividend yield (dy), the long-
term rate of return (ltr), the earnings-to-price ratio (ep), the book to market ratio (bm), the investment-to-capital ratio
(ik), the net equity expansion ratio (ntis), the percent equity issuing ratio (eqis), and the consumption-wealth-income
ratio (cay). KP is the predictive factor extracted from 100 book-to-market and size portfolios from Kelly and Pruitt
(2013). 𝑑𝑝𝐶𝑜𝑟𝑟 is the dividend-price ratio corrected for option-implied dividend growth in Golez (2014) (available in
1994-2011). 𝜇𝐹 is the filtered series for expected returns following Binsbergen and Koijen (2010). SII is the short
interests index from Rapach, Ringgenberg, and Zhou (2016) (available in 1988-2014). SVIX is an option-implied
lower bound of annual equity premium in Martin (2017) (available in 1996-2012).
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Figure A.4 In-Sample and Out-of-Sample 𝑅2 Wedge between 𝑑𝑟 and Other Return Predictors: Fama-
French Market Excess Return
This figure compares annual return predictive 𝑅2 between 𝑑𝑟𝑡 and other commonly studied predictors. The forecast
target is the annual log market excess return from Fama-French. Panels A and B report, respectively, the differences
in in-sample (IS) and out-of-sample (OOS) 𝑅2 between 𝑑𝑟 and an alternative predictor. A positive value signifies that
𝑑𝑟 has a stronger predictive power than the alternative within the same sample period. Most predictors are from Goyal
and Welch (2007) and include the price-dividend ratio (pd), the default yield spread (dfy), the inflation rate (infl), stock
variance (svar), the cross-section premium (csp, available in 1988-2002), the dividend payout ratio (de), the long-term
yield (lty), the term spread (tms), the T-bill rate (tbl), the default return spread (dfr), the dividend yield (dy), the long-
term rate of return (ltr), the earnings-to-price ratio (ep), the book to market ratio (bm), the investment-to-capital ratio
(ik), the net equity expansion ratio (ntis), the percent equity issuing ratio (eqis), and the consumption-wealth-income
ratio (cay). KP is the predictive factor extracted from 100 book-to-market and size portfolios from Kelly and Pruitt
(2013). 𝑑𝑝𝐶𝑜𝑟𝑟 is the dividend-price ratio corrected for option-implied dividend growth in Golez (2014) (available in
1994-2011). 𝜇𝐹 is the filtered series for expected returns following Binsbergen and Koijen (2010). SII is the short
interests index from Rapach, Ringgenberg, and Zhou (2016) (available in 1988-2014). SVIX is an option-implied
lower bound of annual equity premium in Martin (2017) (available in 1996-2012).
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Figure A.5 Out-of-Sample 𝑅2 and Model Complexity
This figure presents the out-of-sample (OOS) 𝑅2 against the degree of model complexity for various values of the
ridge shrinkage parameter, using the machine learning method developed by Kelly, Malamud, and Zhou (2024). The
analysis is based on ridge regressions and forecasts the annual log return of the S&P index. The initial OOS prediction
starts in January 1998, and the OOS 𝑅2 is calculated following Goyal and Welch (2007). The machine learning models
employ a 12-month training window, 𝛾 = 2, a Random Fourier Features (RFF) count 𝑃 ranging from 2 to 12,000, and
the shrinkage parameter ranging from 0.001 to 1000. The blue dashed line indicates the OOS 𝑅2 obtained from the
standard univariate predictive regression using 𝑑𝑟 as the predictor.
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