The Information Clift

Ye Li* Chen Wang'

September 30, 2025

Abstract

We characterize an information cliff in the stock market: the supply of information on
aggregate cash flows drops precipitously beyond a one-year horizon, and so does analyst
forecast accuracy. We use a generalized state-space model to explore the implications for
expected cash-flow growth and expected returns. Identifying the state-space dimensionality is
the only necessary step for sharpening the model structure. Once done, the information cliff
has a direct mathematical representation: the expected cash-flow component of the state space
must be non-persistent. Furthermore, the expected market returns only depend on the valuation

wedge between the total market and one-year dividend strip.
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1 Introduction

Understanding financial market participants’ information about the aggregate economy is crucial.
Asset prices reflect their expectations of future macroeconomic conditions, directly influencing
resource allocation and policymaking. Market participants’ expectations depend on the availability
of information and how the information is processed. A large literature examines the latter, often
exploring how biases in information processing distort expectation formation. Instead, we begin
by characterizing the supply of information in this paper, revealing an information cliff—a sharp
decline in available information on economic fundamentals beyond a one-year horizon. We then
show that this critical feature sheds new light on several central objects in a canonical asset pricing
framework and generates broader implications for the dynamics of expected cash flows and returns.

A critical source of information in the stock market is corporate disclosure, particularly the
quarterly guidance firms release with their earnings announcements. We find that 96% of guidance
pertains to performance within the next year.! Importantly, this information cliff is reflected in the
information content of analysts’ forecasts. Analyst forecasts of aggregate earnings growth for the
upcoming year yield an R? of 73% when predicting realized earnings growth, but their accuracy
plummets for subsequent periods. Specifically, the R? drops to around 20% when analyst forecasts
for the second (months 13-24) or third year are used to predict earnings growth for the corresponding
periods. The predictive power of long-term growth (LTG) forecasts is similarly weak.

Corporate announcements in the first month of a quarter are more informative for revealing
aggregate economic conditions than those in other months (Guo, 2025; Guo and Wachter, 2025a).
Since the information supplied by firms is predominantly about performance within the next year,
we would expect the wedge between the predictive power of analysts’ next-year forecasts and that of
their forecasts for subsequent years to be most pronounced in the first month of a quarter. Our results
confirm this hypothesis. The alignment between the timing of information supply and predictive

power wedge across the horizon lends further support to the one-year cliff of available information.

'Beyond corporate announcements, we tabulate in the Appendix III the horizons of major professional forecasts of
macroeconomic variables. The majority have horizons within four to six quarters.



To explore the asset pricing implications of the information cliff, we extend the model in
Lettau and Wachter (2007) by allowing the dynamics of cash flows and risk prices to be driven by
an arbitrary set of latent state variables and shocks.> The model provides a necessary analytical
structure without imposing restrictive assumptions. Our analysis takes three steps. The first step is
critical for sharpening the model structure: we develop a method to identify the dimensionality of
the state space. Second, we show that once this dimensionality is pinned down, market participants’
information set has a simple mathematical representation, and the information cliff has a direct
implication for the (lack of) persistence of expected cash-flow growth—a key object in the asset
pricing literature. In the last step, we connect the information cliff and expected market return.

To examine the state-space dimensionality, we show that logarithm of dividend strip prices
scaled by realized dividends (‘“‘valuation ratios”) are linear functions of the state variables. As
strips across maturities differ in their state-variable loadings, their valuation ratios are linearly
independent combinations of state variables and empirically span the state space. We compute the
valuation ratios of S&P 500 dividend strips and find that the first two principal components account
for 96% of total variance. In addition, when forecasting returns and dividend growth, the best-
performing pairs of valuation ratios perform as well as three or more valuation ratios. Therefore, to
span the dividend valuations, expected returns, and expected dividend growth, a two-dimensional
state space suffices, despite the many economic forces that affect the aggregate stock market.

The two state variables can be rotated to represent, respectively, the conditional expected
return and conditional expected dividend growth rate, and their laws of motion are AR(1) processes.>
While prior studies have assumed such a two-dimensional structure in different contexts (e.g., Lettau
and Wachter, 2007; Binsbergen and Koijen, 2010), they have not tested this assumption. For our
purposes, formally identifying the state-space dimensionality is crucial; otherwise, as will become
clear next, our first theoretical result on the parametric representation of information cliff would
follow directly from an assumed (rather than empirically grounded) two-dimensional state space.

The conditional expectation of dividend growth rate over the next year—one of the two state

2The model does not impose rational expectation. The stochastic discount factor may reflect belief distortions.
3Note that adding more lags in AR processes means having more than two state variables.



variables—encapsulates all the information that market participants have about future cash flows.
Since it is an AR(1) process, a non-zero autoregressive coefficient would imply that the current
information set contains persistent signals, allowing market participants to forecast growth for the
next two, three, and subsequent years. Thus, the information cliff—market participants do not have
information about growth beyond the next year—implies a zero autoregressive coeflicient. This
autoregressive coefficient has been one of the central objects in the asset pricing literature.*

This direct connection between the information cliff and the persistence (autoregressive
coeflicient) of expected cash-flow growth rates can be tested, providing further support to the
information cliff. Using analyst forecasts to proxy for cash-flow expectations, we estimate the
autoregressive coefficient of expected cash-flow growth rate and find it to be consistently around
zero across different specifications. For robustness, we also fit a state-space model to dividend data,
using a latent variable to represent the expected growth rate. This approach yields similar results.

After exploring the connection with the information cliff and expected cash-flow growth rate,
we turn to the expected return and derive another set of results from our model: if the expected cash-
flow growth rate has a zero autoregressive coefficient, the expected return is a univariate function of
the slope of valuation term structure; otherwise, the sign of the slope’s return forecasting error aligns
with that of the autoregressive coefficient. Here valuation term structure refers to the collection of
valuation ratios of strips with varying maturities. The market price-dividend ratio (pd) reflects the
overall valuation level, and the slope is given by the wedge between pd and the valuation ratio of
one-year dividend strip. When this wedge widens, the term structure steepens: a larger (smaller)
fraction of market value comes from dividends beyond the next year (within the next year).

The return predictive power of the slope is quite intuitive under the information cliff. Since
market participants have limited information on cash flows beyond the very next year, the rise of
valuation of cash flows beyond one year relative to valuation of next-year cash flows is not driven by

improved long-term growth but due to a lower discount rate that benefits the valuation of long-term

“There is a large literature on the dynamics of expected cash-flow growth rate and its asset pricing implications (e.g.,
Bansal and Yaron, 2004; Beeler and Campbell, 2012; Belo, Collin-Dufresne, and Goldstein, 2015; Collin-Dufresne,
Johannes, and Lochstoer, 2016). In an endowment economy, the cash flow is both firms’ payout and aggregate
consumption, but in reality, they differ. Our theoretical and empirical analysis are about on the former.



cash flows more than that of near-term cash flows. Thus, a steepening of valuation term structure
predicts lower market returns. The slope delivers an in-sample R? of 25% and an out-of-sample
R? of 15% and subsumes the predictive power of pd. Augmenting the slope with other predictors
from the literature does not improve the performance, in line with our result on the expected return
being a univariate function of the slope.® Finally, our rolling-window estimation shows that when
the autoregressive coeflicient of expected cash-flow growth deviates from zero, its sign aligns with
that of the slope’s return forecasting error, consistent with our model prediction.

Our exponential-affine model based on Lettau and Wachter (2007) implies a linear mapping
from the slope of valuation term structure to the expected return under the information cliff, which
corresponds to the standard predictive regression. To address the concern of nonlinearity, we show
that the slope in a linear regression outperforms machine learning algorithms in (Kelly, Malamud,
and Zhou, 2024) that nonlinearly aggregate a large set of predictors (including the slope itself).

Beyond discount-rate variation, our analytical framework and return predictability results
have a mispricing interpretation. Traditional market timing bets against the overall valuation level,
pd. Our findings indicate that market participants are well informed of the near term but face an
information cliff beyond one year, so mispricing is likely in the long-term cash flows, and the focus
should be on the slope rather than the level of valuation term structure. To time the market is to
reduce exposure when the valuation term structure steepens and increase exposure when it flattens.®

Betting against the slope is betting against exuberance or pessimism about the long term.

Literature. We characterize an information cliff that market participants face, stemming from
the prevailing corporate practice of providing guidance on performance within the next year. In
contrast, prior studies do not discuss information supply but instead focus on distortions in market
participants’ information usage and how to formalize various biases in their long-term expectations,

such as over- or under-reaction (Afrouzi et al., 2023; Bordalo et al., 2024a,b; Enke and Graeber,

The slope outperforms other predictors, including those summarized in Goyal and Welch (2007) and from more
recent papers, across evaluation metrics, such as Hodrick (1992) adjustment for standard errors and out-of-sample tests
(e.g., encompassing (ENC) and Clark-West (CW) tests).

®Tts Sharpe ratio of 0.58 is 55% higher than that of buy-and-hold strategy (Campbell and Thompson, 2008).



2023; Wang, 2020), false pattern recognition (Barberis et al., 1998; Guo and Wachter, 2025b),
optimism (Cassella et al., 2023), bounded rationality (De Silva and Thesmar, 2024), and failure to
distinguish old versus new information (Guo, 2025; Guo and Wachter, 2025a).

We do not aim to model or pin down a specific bias in how agents utilize information like
those listed above; instead, we emphasize the supply of information and focus on a sharp decline
of information at the one-year horizon and its the asset pricing implications.” Leveraging the
analytical framework of Lettau and Wachter (2007) and our novel method of identifying the state-
space dimensionality, we provide findings that have not been previously discussed, such as the lack
of persistence of expected annual growth rate of aggregate cash flows and the connection between
the expected market return and the slope of the valuation term structure. This focus on a specific
cutoff horizon (one year) and our asset pricing results on the aggregate market distinguish our paper
from the existing literature that study how specific belief biases distort agents’ long-term versus
short-term expectations of firm-level growth (e.g., Da and Warachka, 2011; Bordalo et al., 2019;
Cassella et al., 2023; De Silva and Thesmar, 2024; Guo and Wachter, 2025a).

Given the information cliff at the one-year horizon, we characterize how it affects the in-
formation content of analyst forecasts, contributing to a growing body of research on analyzing
subjective expectations based on survey data (see reviews by Adam and Nagel, 2023; D’Acunto and
Weber, 2024).8 Our paper is particularly related to studies on how distortions in long-term forecasts
lead to mispricing and return predictability (e.g., La Porta, 1996; Nagel and Xu, 2022; Bordalo
etal., 2024b). Our unique focus on the one-year information cliff leads to the discovery of the slope
of valuation term structure as a powerful return predictor that outperforms other predictors across

various metrics. These results contribute to the literature on return predictability.’

7We do not study short-termism, a related topic in the accounting literature on managerial incentives, disclosure,
and firms’ performance (e.g., Bushee, 2001; Bhojraj and Libby, 2005; Call et al., 2014; Brochet et al., 2015).

8This literature includes studies on expectations of firm-level performance (e.g., La Porta, 1996; Dechow and Sloan,
1997; Copeland et al., 2004; Da and Warachka, 2011; Piotroski and So, 2012; Bordalo et al., 2019; Bouchaud et al.,
2019; Binsbergen et al., 2022; Guo and Wachter, 2025a), aggregate market returns and cash flows (e.g., Chen et al.,
2013; De La O and Myers, 2021; Gao and Martin, 2021; Hillenbrand and McCarthy, 2021; Nagel and Xu, 2022;
Charles et al., 2023; Schmidt-Engelbertz and Vasudevan, 2023; De la O and Myers, 2024), and expectations in bond
markets and the macroeconomy (e.g., Amromin and Sharpe, 2014; Coibion and Gorodnichenko, 2015; Piazzesi et al.,
2015; Crump et al., 2016; Bordalo et al., 2020; Giglio et al., 2021; Pang, 2023; Farmer et al., forthcoming).

There is a vast and growing literature on return predictability (e.g., Fama and French, 1988; Campbell and Shiller,



The timing of information supply plays an important role in our findings: while analyst
forecasts predict next-year earnings better than subsequent-year earnings, this difference is most
pronounced in the first month of a quarter when firms supply more information about the aggregate
economy (Guo, 2025; Guo and Wachter, 2025a). Our focus on the impact of information-supply
timing on market participants’ cash-flow expectations differs sharply from prior work, which
predominantly examines its effect on returns. This literature has grown significantly since Savor and
Wilson (2013) and Lucca and Moench (2015) established that stock market returns are significantly
higher on announcement days than non-announcement days (with theoretical explanations provided
by, e.g., Ai and Bansal (2018) and Wachter and Zhu (2022)). Further studies have shown that
information-supply timing affects equity-market anomalies (Engelberg et al., 2018), influences the
performance of CAPM and factor models (Savor and Wilson, 2014; Gilbert et al., 2018), and drives

cross-firm spillover effects (Savor and Wilson, 2016; Ben-Rephael et al., 2021).

2 Direct Evidence on the Information CIiff

The overall data structure. This paper draws on three main categories of data, primarily from
1988 t0 2019, to document the information cliff in agents’ cash-flow expectations, embed it in a state-
space model, identify the state-space dimensionality, and explore the asset pricing implications.
First, to provide direct, model-free evidence of the information cliff in Section 2, we use data on
corporate guidance of earnings and sales growth from IBES Guidance; subjective expectations
(analyst forecasts) and realized earnings growth rates from IBES Global Aggregates (IGA); and
self-aggregated long-term growth (LTG) forecasts from firm-level IBES Unadjusted Summary
Files. Second, to construct our state variable proxies in Section 3, we compute valuation ratios of
dividend strips primarily using prices of S&P 500 index futures from LSEG Datastream and Fama-

Bliss zero-coupon bonds from the CRSP US Treasury Database and alternatively using options

1988; Baker and Wurgler, 2000; Lettau and Ludvigson, 2001; Lewellen, 2004; Cochrane, 2008; Ang and Bekaert,
2007; Goyal and Welch, 2007; Lettau and Van Nieuwerburgh, 2007; Campbell and Thompson, 2008; Rapach et al.,
2010; Kelly and Pruitt, 2013; Rapach et al., 2013; Golez, 2014; Rapach et al., 2016; Martin, 2017; Golez and Koudijs,
2018; Johnson, 2019; Kozak and Santosh, 2020; Chen et al., 2022; Kelly et al., 2024; Bordalo et al., 2024b).



Table 1 Summary Statistics

This table reports summary statistics, including the number of observations, mean, standard deviation, minimum,
maximum, and quartiles, for the main variables. The sample is monthly from 1988:01 to 2019:12. Panel A summarizes
E;“ [Aessr], E,A [Ae;s2], and Ef [Ae;s3], analysts’ forecasts of earnings growth for the first, second, and third year into
the future from IBES Global Aggregate (IGA). Ae, is the realized annual earnings growth from IGA. LT G, is forecasts
of long-term earnings growth, which we self-aggregate from the IBES Unadjusted US Summary Statistics File. Panel B
summarizes the rest of variables. These include our main return predictor, dr (“slope”); the price-dividend ratio pd of
the S&P 500 index; the filtered series for demeaned expected returns (u’") and dividend growth (g") from Binsbergen
and Koijen (2010); the predictive factors for return (K P) and dividend growth (KPCF') from Kelly and Pruitt (2013);
dividend strip price-to-dividend ratios for 0.5 and 1 years (s, s'); the long-term dividend strip price-to-dividend ratio
for horizons beyond 1 year (s'*); one-month and one-year log returns of the S&P 500 index (7/41/12, 77+1); one-month
MKT .MKT

and one-year log returns of the Fama-French market portfolio (r" 2> Teel ); and the 1-year dividend growth rate of

the S&P 500 index and the Fama-French market portfolio (Ad;+1, AdMKT),

t+1

mean std min 25% 50% 75% max

Panel A: Analyst earnings growth forecasts

EA[Aess] 0103 0.096 -0.167  0.056 0.103  0.154  0.425
EA[Aesz] 0134 0.043  -0.069 0.104  0.127  0.157  0.269
EA[Aens] 0130 0.036  0.052  0.100 0.122  0.159 0217
Ae; 0.072 0.135 -0.380 -0.008 0.092 0.148 0.425
LTG, 0.125 0.018 0.093 0.115 0.120 0.129  0.187

Panel B: Predictors, returns and dividend growth

dr, 4.027 0494 2952 3727 4.044 4208 6.632
pd, 3.883 0280 3239 3.656 3930 4.047 4.524
uf -0.039 0.024 -0.091 -0.051 -0.041 -0.024 0.010
gF 0.019 0.059 -0.233 -0.002 0.031 0.056 0.132
KP, -0.504 0.073 -0.725 -0.562 -0.482 -0.450 -0.378
KPEF -0.385  0.068 -0.605 -0.422 -0.389 -0.338 -0.220
593 -0.819 0.281 -2.629 -0.883 -0.768 -0.666 -0.280
5! -0.142 0280 -2.241 -0210 -0.098 0.016 0393
i 3.863 0297 3204 3.629 3913 4.030 4.521
Fre1/12 0.009 0.041 -0.184 -0.015 0.013 0.034 0.108
Tr4l 0.095 0.157 -0.568 0.046 0.126 0.187 0.429
riih 0.009 0.042 -0.187 -0.016 0.014 0.036 0.108
rMKT 0.096 0.159 -0.554 0.036 0.128 0.194 0.440
Adyy 0.059 0.070 -0.237 0.025 0.068 0.112 0.168

AdMKT 0.058 0.081 -0.207 0.018 0.051 0.107 0.262

t+1

(from OptionMetrics) and dividend futures (from Goldman Sachs and Bloomberg) of the S&P
500 index for robustness. These ratios allow us to map out the latent state variables, which is key
for identifying the state-space dimensionality. Finally, to test the model’s implications on return

predictability in Section 4, we benchmark our return predictor against a wide array of predictors
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Figure 1 The One-Year CIiff of Corporate Earnings and Sales Guidance

This figure shows the horizon of management guidance announcements for S&P 500 firms from 1992 to 2019 (IBES
Guidance). Panels A and B show the distribution of guidance by quarterly horizons for EPS and sales, respectively.
The annotations highlight the percentage of guidance for the next four quarters or less. Panels C and D plot the time
series of the proportion of guidance for a horizon of four quarters or less for EPS and sales, respectively.

from the literature and machine learning models in a series of forecasting and spanning exercises.

Table 1 provides the summary statistics for the main variables. We will introduce the variable

names and specific details of data sources and variable construction in each relevant section.

Information supply and the one-year cliff. Information releases from publicly listed firms are an
important source of signals about aggregate economic conditions. We characterize a sharp decline
of information supply at the one-year horizon, using the IBES Guidance dataset that spans the

period from 1992 to 2019 and includes 28,000 management guidance announcements from S&P



500 firms.'? In Panel A of Figure 1, we plot the frequency distribution of firms’ earnings guidance.
The vertical axis reports the number of earnings guidance, and the horizontal axis shows the
guidance horizon. Firms provide guidance towards the next fiscal year end and very rarely towards
the next two or three fiscal year ends. The guidance horizon is the difference between a fiscal year
end and the announcement date. In the frequency distribution, there is a sharp discontinuity around
the one-year horizon, beyond which firms seldom provide earnings guidance. An overwhelming
96% of all guidance announcements are for horizons of one year or less.

This scarcity of long-term corporate guidance creates an information cliff for the market
participants, leaving analysts and investors with little direct information from firms to anchor their
forecasts beyond the one-year mark. As shown in Panel C of Figure 1—where we compare the
fraction of guidance within four quarters to the fraction of guidance beyond four quarters, this short-
term focus in corporate guidance is not a recent phenomenon but has been a consistent feature of
corporate disclosure practices throughout our sample period.

One natural concern regarding earnings guidance is that corporate earnings may be subject
to management manipulation, which may limit their informativeness. However, we find a similar
pattern in sales guidance (see Panel B and D of Figure 1). Sales are less susceptible to manipulation
and is thus a more objective measure of corporate performance. The consistency across both earn-
ings and sales guidance suggests that the information cliff is not about firms’ earnings management
in conjunction with strategic disclosure but reflects standard corporate practices.

Since the aggregate stock market’s cash flow is closely tied to the macroeconomy, investors
may also rely on forecasts of macroeconomic variables from professionals and policymakers.
Table A.4 in the Internet Appendix summarizes the maximum forecast horizons for U.S. economic
growth from several leading sources, including the Blue Chip Economic Indicators, the Survey
of Professional Forecasters, the Livingston Survey, Consensus Economics, the Wall Street Journal
Economic Survey, and the Federal Reserve’s Summary of Economic Projections (SEP). While

some surveys, like the SEP, provide three-year forecasts for annual GDP growth, the majority

lOEarnings guidance has become increasingly prevalent (Penman, 1980; Hutton et al., 2003; Miller, 2002).



of professional forecasts cluster around the annual horizon. Some longer-term forecasts exist
(e.g., Blue Chip’s semiannual 5- to 10-year projections) but are typically multi-year averages.
Such averaging smooths out fluctuations and diminishes their informativeness about economic
environments at specific horizons beyond one year. This scarcity of detailed, long-term economic

forecasts reinforces the information cliff that the stock-market participants face.

The information cliff and cash-flow expectations. We examine how the scarcity of information
on long-term growth affects market participants’ expectations of future cash flows. IBES Global
Aggregates (IGA) provides analysts’ forecast of earnings growth for the S&P 500 index based
on firm-level forecasts. The aggregation procedure weighs individual companies by their market
capitalization.!! To transform earnings forecasts to forecasts of growth rates, IGA takes the ratio of
forecast for period ¢ + k to forecast for r + k — 1. We consider forecasting horizons of one, two, and
three years (i.e., k = 1,2, 3), and the growth rate forecasts are denoted by B [Ae41], EA [Aessa],
and E*[Ae;,3], respectively.!? The data is available at a weekly frequency. We will consider both
weekly and monthly frequencies in our regression analysis. For estimation at monthly frequency,
we take the last weekly observation of each month. Our sample is from January 1988 to December
2019. We also utilize analyst forecasts for long-term growth (LTG). We aggregate firm-level LTG
from IBES to the index level.'? This data is available at the monthly frequency. It is aggregated to
the index level via the same aggregation procedure described above.

Using analysts’ forecasts, we predict earnings growth over the next 12 months, from the
13th to 24th month, and from the 25th to 36th month. The information cliff manifests as a sharp
deterioration in forecasting performance once the horizon extends beyond one year. Table 2 report
the results. In column (1), we regress the realized one-year growth rate of aggregate earnings from

firms covered by IGA on the analysts® forecast of the same one-year horizon. The R? is 73%,

'To deal with the fact that companies have different fiscal year-end, IGA calendarizes all company-level data to
a December calendar year before aggregation. This approach follows the Compustat rule. Please refer to “Thomson
Reuters Datastream IBES Global Aggregates Reference Guide” for more detail.

2Note that for k = 1, the growth rate is simply calculated as the forecast divided by realized earnings.

BIBES firm-level forecasts of the annualized average growth rate of earnings over the next three to five years have
been adopted in the recent literature (e.g., Nagel and Xu, 2022, Bordalo et al., 2024b, and De la O and Myers, 2024).
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Table 2 Predicting Earnings Growth Across Horizons with Analyst Forecasts

This table reports the results of regressions that predict earnings growth at various horizons with analyst forecasts.
The dependent variables are realized earnings growth from IGA of next year, the year after, and the third year in the
future, and the average earnings growth between years 3 to 5. The independent variables are analysts’ forecasts of
one-year earnings growth between ¢ + 7 to f + T + 1 across horizons (E;“ [Aesiry1], for T = 0,1,2) from IGA and
the self-aggregated long-term earnings growth forecasts (L7G,) of the S&P 500 Index. The #-statistics are calculated
based on Newey-West standard errors with 18 lags are reported in parentheses.

Aesyy Aeryr Aesys A€t+2,t+5
(1) (2 (3) 4)
Intercept -0.056 -0.097 -0.149 0.004

(-4.127)  (-2.063) (-2.130)  (0.047)
FA[Aesq]  1.204

(20.101)
E2 [Ae40] 1.164
(3.683)
EA [Aesss] 1.598
(3.342)
LTG, 0.486
(0.717)
N 372 360 348 324
R? 0.73 0.15 0.21 0.01

indicating that analysts in general are able to forecast near-term growth quite well.

Next, we change the forecasting target while maintaining the setup of right-side variables
in the regressions. In column (2) of Table 2, the analysts’ forecast for earnings growth from the
13th to 24th month only has a R? of 15% for predicting earnings growth at the same horizon,
which stands in sharp contrast to the forecasting performance at one-year horizon in Column
(1). We obtain similar results when forecasting growth from the 25th to 36th month in column
(3). In the last column, we replicate the exercise for the average growth for years 3, 4 and 5,
m = (Aess3 + Aeq + Aeyys) /3, which corresponds to the forecast horizon of LTG (a period
of between three to five years as per IBES’s definition).

As pointed out by Guo (2025) and Guo and Wachter (2025a), corporate announcements in
the first month of a quarter contain more information about the aggregate economic conditions than
the second and third months. Because the information supplied is mainly about firms’ performance
within the next year rather than in the subsequent years, we have three hypotheses. First, when

predicting earnings growth within the next year, analyst forecasts should exhibit stronger predictive
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Figure 2 Predicting Earnings Growth Across Horizons by Month of a Quarter

This figure reports, respectively in Pane A and B, the R? of predictive regression and the Root Mean Squared Error
(RMSE) of predicting earnings at various horizons with analyst forecasts (as done in Table 2), with the regression
samples separated by month of a quarter to highlight the effect of information supply. The RMSE for LTG (3-year
average growth) is annualized by multiplying by V3 for comparability.

power in the first month of a quarter as firms supply information. Second, when predicting earnings

growth beyond one year, the predictive power of analyst forecasts should not vary a lot across
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months of a quarter, because even though firms supply more information in the first month, the
information is not about growth beyond the very next year. Third, the wedge between one-year and
long-term predictive power of analyst forecasts should be wider in the first month of a quarter when
information arrives for the upcoming year but not for subsequent years.

To examine the three hypotheses, we use analyst forecasts to predict earnings growth as in
Table 2 but separate the sample by month of a quarter. In Figure 2, we plot the predictive regression
R? in the top panel and the root mean squared error (RMSE) in the bottom panel, with regression
results in Table A.2 of Appendix III. Note that since the forecasting target in the last specification
involving the LTG is an average of growth rates over three years, we multiple its RMSE by V3 so
that its magnitude is comparable to that of RMSE from other forecasting regressions.

Our findings in Figure 2 support the three hypotheses. First, analyst forecasts of aggregate
earnings show greater accuracy measured in both R?> and RMSE in the first month of a quarter
than in the second and third months, a result attributable to the fresh information from firms’
performance guidance in the first month. Second, once the forecasting horizon extends to 2 or 3
years, the accuracy of analyst forecasts does not exhibit as large a variation across months of a
quarter. Third, comparing R*> and RMSE across forecasting horizons (i.e., within the same color),
we can see that the accuracy wedge between analyst forecast of one-year earnings and analyst
forecast for the subsequent years is wider in the first month of a quarter. For example, the R? drops
from 78% to 18% (a wedge of 60%) in the first month when the forecasting period changes from
the first to the second year, but in the second month, the R? wedge is 51% (= 69% - 18%).

Overall, we empirical exercises in this section demonstrate that the supply of information
from corporate announcements has a one-year cliff, which corresponds to the significantly higher
accuracy of analyst earnings forecasts at the one-year horizon compared to longer horizons. The
importance of information supply as a driver of this accuracy wedge is further supported by
the finding that the wedge is widest during the first month of the quarter, coinciding with peak

information release.'* The following sections embed the information cliff into a canonical model

I4A potential concern is whether the sharp decline of forecasting accuracy is due to agents’ extrapolating past
fundamentals (e.g., Barberis et al., 1998; Barberis, 2018). We test this possibility by including lagged earnings growth
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and explore its implications on several central objects in the asset pricing literature.

3 A Parametric Representation of Information Cliff

We provide a parametric representation of the information cliff through a state-space model (e.g.,
Lettau and Wachter, 2007). In the model, cash-flow expectations are driven by the state variables. To
sharpen the characterization of information cliff, we develop a method to identify the dimensionality
of state space. We find that the state space is two-dimensional, and therefore, the model can be
reduced to having one state variable driving the expected return (via the price of risk) and the other
driving the conditional expectation of cash-flow growth rate. The information cliff is equivalently

represented as a condition on the autocorrelation of the expected cash-flow growth rate.

3.1 A generic state-space model

We consider a dynamic economy where the information filtration is given by a Markov process.
The state of an economy at time ¢ is summarized by X;, a K-by-1 vector of state variables. We

assume that the law of motion of X; is given by a first-order vector autoregression
X1 = HXI+O-)—|(—EZ+1a (D

where €. is a N-by-1 vector of shocks that capture all the news at ¢ + 1 and are independent over
time with normal distribution N (0, ). Note that since any higher-order vector autoregression can
be written as a first-order vector autoregression by expanding the number of state variables, the
AR(1) specification is without loss of generality. The autoregressive coefficients are given by II, a
constant K-by-K matrix, and ox is a N-by-K matrix of shock loadings.

The growth rate of dividend from ¢ to ¢ + 1 has a N-by-1 shock-loading vector op,

D
In ( l;“) =g+ 0D €l (2)
t

as a control in our forecasting regressions. Table A.3 in the Internet Appendix shows that our main results are robust.
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where the time-varying expected dividend growth rate is given by
- T 1 -+
81=8+¢ Xi—sopZop. 3)

We allow the state-variable loadings, ¢, to be any K-by-1 vector.

No arbitrage condition implies the existence of a stochastic discount factor
1 T T
M =expi—ry— E/l’ YA = A, €41 s @
where 7 is the one-period risk-free rate and the N-by-1 vector of risk prices, 4;, is given by
L =1+0"X,. ®)

We do not impose restrictions on 6, the state-variable loadings of the prices of risks, 4;. The
prices of risks (or associated the change of measure) may also be interpreted as reflecting belief
distortions, in which case agents’ subjective expectation may deviate from the rational expectation.

The information cliff is about whether agents’ current information set contains useful signal
about cash-flow growth beyond the next year. In this generic setup, characterizing this property
seems rather complicated. Next, we investigate the dimensionality of X;, and then we show that once

the dimensionality is pinned down, characterizing the information cliff becomes straightforward.

3.2 State space dimensionality

The measurement framework. To determine the dimensionality of X;, we develop a method
based the mapping between dividend strip prices and the state variables, X;. Let P denote the

time-f price of dividend at 7 + n. The no-arbitrage condition implies a recursive equation: forn > 1,

P! =E, [M P, (6)

t+1

with P? = D;. The log price-dividend ratio of the dividend strip with maturity 7 is given by

st = ln(%) =A(n)+B(n)" X,, (7)
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where A (n) and B (n) are deterministic functions of n given by a system of recursive equations
(A.4)-(A.5) in the appendix with the initial conditions A (0) = 0 and B (0) = 0.
Given K log price-dividend ratios of strips, {s:"'}io, with a full-rank loading matrix,

B ({ni l’il) = [B(n1),B(ny),...,B(ng)]", the state space is recovered by

X =B () [ = A o = A G| ®

Thus, a collection of log price-dividend ratios of dividend strips can span the state space. The
revealed (rotated) state variables may represent various underlying economic forces.'> Next, we

empirically identify the state-space dimensionality by analyzing the strip valuation ratios.

Mapping out the state variables. To obtain P}, we first calculate the value of dividends paid

beyond the first n years, denoted by P/*. Under the risk-neutral measure (“RN”),

+00 oo

n+ —nr RN -Tr -nrymRN | GRN -Tr

Pt = e BN | N e IDy e | = e BN BN | e Dy || )
=1 =1

RN

where the expectation operator, E;},

[-], was inserted under the law of iterated expectations. Note

that the (ex-dividend) stock price at ¢ + n is

+00
Pran =B | 3 e Dy | (10)
=1
so we have
Pt = e TEfN [Py . (11)

The first component, e/, is ZC B}, the price of a zero-coupon bond with maturity n. The second

component is the risk-neutral expectation of stock price, i.e., the futures price, F;' (Duffie, 2001).

SDuffie and Kan (1996) point out that state variables of the bond market can be linearly mapped to zero-coupon bond
yields. This observation is critical for estimating term structure models (Duffee, 2013). The equity counterparts of
zero-coupon bonds are dividend strips (Lettau and Wachter, 2007). Dividend processes are added to build no-arbitrage
equity models that are more flexible than fully specified equilibrium models (e.g., Bekaert and Grenadier, 1999; Pan,
2002; Brennan, Wang, and Xia, 2004; Lettau and Wachter, 2007, 2011; Koijen, Lustig, and Van Nieuwerburgh, 2015;
Backus, Boyarchenko, and Chernov, 2018; Kragt, de Jong, and Driessen, 2020). Our analysis relies on the prices of
dividend strips to map out state variables. Giglio, Kelly, and Kozak (2024) analyze the dual problem—that is, they
compute strip prices from empirically specified and observed dynamics of state variables.
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Once we obtain, for example, P!*, the price of one-year dividend, P/, is given by
Pl =P, - P, (12)

which is the difference between the price of dividends across all horizons, P; (i.e., the equity price),
and the price of dividends paid after the first year. Following the same method, we calculate the
price of dividends paid in the next six months, P?'S from P; — P?'5+. In our empirical analysis,
we use the valuation ratios of dividend strips with maturity 1 and 0.5, i.e., s} = In(P!/D,) and
59> = In(P%3/D,), and the valuation ratio of dividends paid beyond one year, s!* = In(P!*/D,).1¢
We consider these equity strips as the futures data at 0.5 and 1 year maturities are the most liquid.
For futures prices, we use S&P 500 index futures, which are the most actively traded equity
futures. The futures prices are from Datastream.!” The zero-coupon bond prices are from the
Fama-Bliss database. The return and market capitalization of the S&P 500 index are obtained from
CRSP. The dividend data is from S&P Global and obtained from the updated dataset of Goyal and
Welch (2007). Our sample starts in January 1988 for high-quality dividend data and, importantly,
a sufficiently liquid futures market without structural changes.'® After the market crash of October
1987, regulators overhauled several trade-clearing protocols.!® Our sample ends in December 2019.
Lastly, Fama-French factors at the monthly frequency are obtained from Ken French’s website.
For robustness, we construct dividend strip prices with two alternative methods.?? First, using
S&P 500 index options data from OptionMetrics (1996-2019), we derive the implied dividend strip

prices for 0.5 to 2 years maturity via the put-call parity, following Binsbergen et al. (2012). Second,

16There is no collinearity: s!*+s/ is the sum of two ratios in logarithms, In(P'/D,) +In(P'*/D,), which is not pd,.

17We obtain the daily settlement prices for the S&P 500 futures. For return and cash flow prediction at the monthly
frequency, we use the settlement price of the last trading day of each month. The maturities of the traded futures
contracts vary over time, so to obtain futures prices with constant maturity, we apply the shape-preserving piecewise
cubic interpolation to complete the futures curve. The results using linear interpolation are similar.

8Wang, Michalski, Jordan, and Moriarty (1994) identify structural changes of liquidity in the S&P 500 futures
market in the pre-1987 period, during the market crash, and in the post-1987 period.

19The stock market crash in October 1987 reveals anomalous trading in the futures market that was primarily driven
by portfolio insurance (Brady Report (1988)). According to the New York Stock Exchange: “In response to the market
breaks in October 1987 and October 1989, the New York Stock Exchange instituted circuit breakers to reduce volatility
and promote investor confidence. By implementing a pause in trading, investors are given time to assimilate incoming
information and the ability to make informed choices during periods of high market volatility.”

20 A Targe literature discusses how to measure strip prices from market data (e.g., Binsbergen et al., 2012; Binsbergen
and Koijen, 2017; Cejnek and Randl, 2016, 2020; Cejnek et al., 2021; Gormsen and Lazarus, 2023; Golez and
Jackwerth, 2024) and the associated challenges (Schulz, 2016; Song, 2016; Boguth et al., 2022).

17



100 100 100

75 75 75

50 50 50
25 l 5 25 I 5 25
0 [ [ 0 -0 0 l— ______
1 2 3 4 I 2 3 4 5 6

12345672809
PC PC PC

Variance Explained (%)
Variance Explained (%)
Variance Explained (%)

A. Futures (1988-2019) B. Options (1996-2019) C. Dividend Futures (2005-2019)

Figure 3 Principal Component Analysis of Dividend Strip Valuation Ratios

This figure presents three plots from a principal component analysis of valuation ratios computed from three data
sources. Panel A is based on dividend strip prices from the S&P 500 futures from 1988 to 2019. The valuation ratios
include pd,, s, s!, and s!*. Panel B is based on dividend strip prices from the S&P 500 options from 1996 to 2019.
The valuation ratios include pd,, s¥-, s}, 5!, 52, and s>*. Panel C is based on dividend strip prices from the S&P 500
dividend futures from 2005 to 2019. The valuation ratios include pd;, si (fori € {1,2,...,7}), and s,7+.

we use S&P 500 dividend futures data from Goldman Sachs and Bloomberg (2005-2019) and
interpolate the futures curve for dividend strip prices with maturities ranging from 1 to 7 years,

following Binsbergen et al. (2013).2! We choose the futures-implied dividend strips as our main

sample due to the longer time series and greater liquidity.

Measuring state space dimensionality. As shown in Section 3.1, valuation ratios of dividend
strips are linear combinations of the underlying state variables. In Panel A of Figure 3, we report the
results from principal component analysis (PCA) of strip valuation ratios computed from the index
futures data (our baseline sample). The first two components account for 96% of total variance.
We show the PCA results based on the options data in Panel B of Figure 3 and the results based on
dividend futures data in Panel C. These results indicate that the state space is two-dimensional.
However, as pointed out by Kelly and Pruitt (2015), a shortcoming of PCA analysis is that

information embedded in the principal components may not be the most relevant for objects of

2'We are grateful to Christian Mueller-Glissmann at Goldman Sachs for sharing the dividend futures data
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Figure 4 In-Sample and Out-of-Sample R? from Dividend Growth Predictive Regressions

This figure reports in- and out-of-sample R? for predicting annual S&P 500 Index dividend growth. The predictors
include the predictor from Binsbergen and Koijen (2010) (g%, the predictor from Kelly and Pruitt (2013) (KPCF),
and different combinations of pd, s*- (price-dividend ratio of six-month strip), s' (price-dividend ratio of one-year
strip) and s'* (price-dividend ratio of dividends beyond one year). Each round dot represents in-sample R”> with a
95% bootstrapped confidence interval. Each triangle represents out-of-sample R” by recursively forecasting returns
beginning in 1998:01.
interest, such as the expected return and cash-flow growth. Next, we take a predictive regression
approach as the expected return and expected dividend growth rate are driven by the state variables.
In Figure 4, we report R? of predicting S&P 500 dividend growth over the next year using
different sets of valuation ratios. A round dot represents adjusted in-sample R? (reported with
its 95% confidence interval) and a triangle represents out-of-sample R>. We report the detailed
regression results in Table A.5 in the Internet Appendix. Our predictive regression is run on
monthly observations. For comparison, we include predictors from prior studies. Our state-space

approach is closely related to Binsbergen and Koijen (2010). Binsbergen and Koijen (2010) use

the realized returns and dividends to estimate a latent-state model and filter out the conditional
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expected return, u”, and the conditional expected dividend growth rate, g'. These filtered variables
are also combinations of state variables (subject to estimation errors). We replicate the analysis of
Binsbergen and Koijen (2010) and compare our state-space representation via observable valuation
ratios with information from the filtered /" and gZ'. Kelly and Pruitt (2013) also take a state-space
approach and use the cross-section of market-to-book ratios of individual stocks to extract the
expected return and dividend growth of the aggregate market. We have also replicated Kelly and
Pruitt (2013) and include their state variables (predictors) for comparison.

Our results show that there exist two valuation ratios, for example, s! and s'*, sufficient for
forecasting dividend growth, indicating the state space being two-dimensional. Note that the cash
flow predictive power varies across different sets of valuation ratios, suggesting that it is important
to take a predictive regression approach rather than simply relying on the PCA of valuation ratios.
Any given pair of valuation ratios can almost fully span the two principal components, but they
may contain distinct information about return and cash flow dynamics.

In Figure 5, we report the R? of predicting annual returns of the S&P 500 with different sets of
valuation ratios.?> Our regression is run monthly. We report the detailed regression results in Table
A.6 in the Internet Appendix. For comparison, we include predictors motivated by a state-space
approach, such as u’ from Binsbergen and Koijen (2010) and KP from Kelly and Pruitt (2013),
and we add the price-dividend ratio. The conclusion is similar to that from cash flow prediction:
having three or more valuation ratios does not improve predictability relative to the best-performing

pairs of valuation ratios, for example, s' and s'*, indicating that the state space is two-dimensional.

3.3 The information cliff: a parametric presentation

We have shown that two state variables suffice to span the spaces of dividend valuations across
maturities, expected returns, and expected cash-flow growth rates. Next, we set the dimension of

state variables, X;, to two in the model from Section 3.1. This will allow us to derive a sharp

22Binsbergen et al. (2013) use valuation ratios of dividend strips to forecast strip returns and dividends. Different
from Binsbergen et al. (2013), our focus is on the asset that strips aggregate up to (equity index) rather than strips.
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Figure 5 In-Sample and Out-of-Sample R? from Return Predictive Regressions

This figure reports in- and out-of-sample R? for predicting annual S&P 500 Index returns. The predictors include the
predictor from Binsbergen and Koijen (2010) (uf), the predictor from Kelly and Pruitt (2013) (KP), and different
combinations of pd, s* (price-dividend ratio of six-month strip), s! (price-dividend ratio of one-year strip) and s'*
(price-dividend ratio of dividends beyond one year). Each round dot represents in-sample R> with a 95% bootstrapped
confidence interval. Each triangle represents out-of-sample R? by recursively forecasting returns beginning in 1998:01.
implication of the information cliff on expected cash-flow growth and develop an empirical test.
As in Lettau and Wachter (2007), we rotate the state variables so that one drives the price

of risk, while the other drives the expected dividend growth rate. Let X; = [y;, z;]". The state

variable, y;, with a law of motion

Y+l :pyyt+0'y—r€t+1, (13)
drives the price of risk 4;, so equation (5) becomes

A=A+, (14)
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and the stochastic discount factor (SDF) is given by
1
M1 = exp {_rf - E/lzz(o-/—lrzo'/l)z - /1,0'}6,“} ) (15)

where, as in Section 3.1, €4 is a N-by-1 vector of shocks, independent over time with normal
distribution N (0,X%). The price of risk for the n-th shock is A;0(n), where o (n) is the n-th

element of o). The expected dividend growth rate, g, = E[In (D;41/D;)], is given by
_ I +
gt=g+Zz—§0'D20'D, (16)
where the state variable, z;, has the following law of motion
2+l = Pz + O'ZTEHI . (17)

The N-by-1 shock vector € contains news at ¢ + 1. The variables’ shock loadings may differ, for
example, o, # 0. z; and y, can be correlated through their overlapping exposure to shocks.
Throughout our analysis, the expectation operator represents the econometricians’ belief or
rational expectation, and g, is rational expectation of cash-flow growth over the next year that
is a univariate function of z;. We allow agents’ subjective expectation to deviate from rational
expectation. In this two-dimensional setup, a distorted belief, denoted by £ can be defined through

a Radon-Nikodym derivative with respect to the physical measure £ given by

dP Loy re, 5 o
9 —exp {_5 2(6T0)? - A,UI6,+1} , (18)

where A;, in its most general form, can a linear function of both of the state variables, y; and z;:
A = o + Gyy, + 8.2, . (19)
Under the distorted belief, agents’ expected dividend growth over the next year is given by
- Twa (a . . 1+
gr=g+z—0, 20, (CVO +ayyr + afzz,) - EO'DZO'D
_ A A 1
%+@h+&a—?%&m, (20)

where, to simplify notations, we introduce the linear coefficients, 8, and By. The law of motion

(17) under rational expectation has z,’s coefficient equal to one. Belief distortion may cause 3. # 1.
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Moreover, y; does not enter g, in (17), but may enter the distorted expectation, g, if By # 0.2

No matter whether the agents have rational expectation or distorted beliefs, should p,—the
autoregressive coeflicient of g;—be not zero, the information cliff cannot exist. To see this, consider
the cash-flow growth from 7 + 1 to # + 2, which is the sum of g, and a shock to the realized growth

at ¢ + 2 with a zero mean, so the time-¢ expectation (or best forecast) of growth fromz+1toz+2is

_ 1
E/[In (Di42/D11)] =E; [g141] = 8 + B¢ [241] — EO'EZO'D

3 1
=g+ P2 — EO'EZU'D : 1)

Here, as in our empirical exercise in Section 2, we are evaluating whether agents’ information set
has signal about future growth, so the expectation operator, E, [-], reflects the rational expectation
or econometricians’ belief, and accordingly, E; [z;+1] = p;z; under the physical-measure law of
motion (17). If agents have rational expectation, their growth expectation is g;, which is linear in z;;
otherwise, under belief distortions, agents’ growth expectation can be a linear function of z, and y;.
In either case, agents’ time-¢ information set contains z;. If p, # 0, agents has signal about growth
from ¢ + 1 to ¢ + 2, which implies that the information cliff does not exist. Therefore, a necessary

condition for the information cliff is p, = 0. The next proposition summarizes this result.

Proposition 1 (Information cliff: a parametric presentation) If agents do not have information

about cash-flow growth beyond the next year, we have p, = 0.

Discussion: misperception of the persistence. Several recent studies highlight the importance
of agents’ perceived persistence of state variables (e.g., Gabaix, 2019; Wang, 2020). Our theoretical
framework can accommodate subjective persistence of expected cash-flow growth rate. As shown
in (20), even though z; is not persistent under p, = 0, y, may still be persistent. In this case, agents’
taking (20) as the model for the expected growth rate would commit a similar mistake as in Guo
and Wachter (2025b): they have the wrong mental model of a persistent expected growth rate. As

emphasized in our literature review, our paper focuses on the implication of information cliff on

23Since A, linearly drives the expected return (as will be shown in Section 4.1), belief distortion implies the expected
return being correlated with agents’ growth expectation errors, in line with prior findings (see our literature review).
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7 (the actual signal about future cash flows), i.e., p, = 0, rather than how bias in agents’ belief
behaves and propagates over the forecasting horizon. That said, our model has a flexible setup that

accommodates potential belief distortions like the one in Guo and Wachter (2025b).

3.4 Testing the parametric representation

We examine whether the expected cash-flow growth lacks persistence, i.e., p, = 0. As the coverage
of dividend forecasts started in 2003, we follow the literature and consider analysts’ earnings
forecasts as proxy for cash-flow expectations (available in a longer sample starting 1976).>* An
accounting identity connects the earnings and dividends: D; = Earnings, X (1 — plowback rate,).
As documented by Péstor, Sinha, and Swaminathan (2008) and Chen, Da, and Zhao (2013), the
plowback rate is quite stable. Therefore, the earnings growth rates are close to those of dividends.

Analyst forecasts may not perfectly reflect the rational expectations of growth. Therefore, we

add a noise term between the analyst expectations and expectations in our model:
E? [Aersi] = B [A 4 22
¢ [Aesi] = Es [Aersk] T & ko (22)

where we consider k = 1,2, 3, and E; () represents the rational expectation as in the model. From

equation (16) in the model, we obtain

Ef‘ [Aep1] =c+2z + 8;?1
E;‘ [Aess2] = ¢ + B [z41] + 822 =Cct P2+ 822

E;A [Aers] = ¢ +E; [zr42] + 523 =c +P§Zz + 823,

where c is a constant and s;‘k has a zero mean, k = 1, 2, 3. Using the first equation to substitute out

24 Analyst forecasts reflect their beliefs as compensation are linked to forecast precision, and their forecasts are likely
to reflect market participants’ beliefs broadly (e.g., Mikhail, Walther, and Willis, 1999; Cooper, Day, and Lewis, 2001;
Bradshaw, 2004; Hillenbrand and McCarthy, 2021). Forecasts may be distorted due to behavioral, incentive, and
institutional frictions (e.g., Gu and Wu, 2003; Malmendier and Shanthikumar, 2007, 2014; Binsbergen et al., 2022).
Bias is contained as long as such frictions do not correlate systematically with analysts’ true beliefs.

24



Table 3 Estimating the Persistence of Expected cash-flow growth (Analyst Forecasts)

This table reports the estimates of p,, the autoregressive coefficient of expected cash-flow growth rate, based on
equation (23). The estimation uses aggregate earnings growth forecasts of the S&P 500 Index obtained from IGA.
Columns (1) and (3) report the estimates of p, using monthly data, while columns (2) and (4) report the estimates
of p, using weekly data. Columns (1) and (2) use earnings growth forecasts for 1, 2, and 3 years ahead (“Y1:Y3”)
to estimate the two-equation system (23), while columns (3) and (4) only use earnings growth forecasts for 1 and 2
years ahead (“Y1:Y2”) to estimate the first equation in (23). z-statistics based on Driscoll-Kraay standard errors with
autocorrelation of up to 18 lags are reported in parentheses. Data sample: 1988:01-2019:12.

1) 2 3) “)
(1-p2)g 0.129 0.122 0.141 0.133
(13.995) (16.906) (15.536) (16.745)
o 0.028 0.015 -0.071 -0.073
(0.690) (0.381) (-1.379) (-1.295)
N 768 1887 384 943
R? 0.003 0.001 0.025 0.028
Sample Monthly Weekly Monthly Weekly
Periods Y1:Y3 Y1:Y3 Y1:Y2 Y1:Y2

Z; in the second and third equations, we obtain a system:

Ef [Aena] Ef [Aeri]| &) —pefy
i =(l=pJg+pe| + tA ’A - (23)
Ef [Aerss] Ef [Aern] €12 7 P&,
———
=y

We estimate p, by regressing y2 on x2. The system of equations becomes a linear regression system
of earnings growth estimates, EA [Aey1], EA [Aess2], and B [Ae;y3]. Note that € is allowed to
be serially correlated across the starting dates of growth periods, i.e., #, f + 1, and 7 + 2.

The results are reported in Panel A of Table 3. We estimate equation (23) with both monthly
(columns 1 and 3) and weekly observations (columns 2 and 4) of analyst forecasts. In columns
(1) and (2), our estimation includes both equations in (23), while in Column (3) and (4), we only
include the first equation, i.e., only using forecasts at one- and two-year horizons for better data
quality. Across the specifications, the estimate p, is statistically indistinguishable from zero.

Next, we consider an alternative way to estimate p, by exploring the relationship between
forecasts of short- and long-term earnings growth (LTG). Given the autoregressive structure (17),
the expected growth rate from period n to n + 1 depends on the expected growth rate over the very

next period via a coeflicient p?. If p, is zero, then p? is zero, which implies that the average growth
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Table 4 Estimating the Persistence of Expected cash-flow growth (LTG Forecasts)

This table reports estimates of p7 in the regression, log(1 + LTG,) = const + pLTE [Ae;1] + &;, where LTG, is
the long-term growth forecasts (LTG) of the S&P 500 Index, self-aggregated from stock-level LTG forecasts from the
IBES Unadjusted Summary File. The short-term forecast, E [Ae41], is the IGA 1-year earnings growth forecast.
t-statistics based on Newey-West standard errors with autocorrelation of up to 18 lags are reported in parentheses.

ey
log(1+ LTG,)
Intercept 0.116
(28.615)
EA [Aes41] 0.017
(0.711)
N 384
R? 0.011

rate over three years and beyond does not depend on the expected growth rate over the next year.
Therefore, we regress monthly observations of LTG forecast on the near-term expected growth rate,
i.e., E;“ [Ae;+1], and denote the regression coefficient by pZLT. In Table 4, our estimate is statistically
indistinguishable from zero, which implies p, = 0, consistent with our findings in Table 3.

For robustness, we consider a method to estimate p, without using analyst forecasts (Appendix
IT). We fit the latent state model given by (16) and (17) to dividend data to filter out the expected

cash-flow growth rate. The results corroborate our findings on p, being close to zero.

4 The Information CIiff and Expected Returns

The previous section presents a critical implication of the information cliff on the expected cash-
flow growth rate. Next, we draw the connection between the information cliff and the expected
return. We not only provide additional asset-pricing results but also corroborate our findings on the
information cliff. So far, we have provided direct evidence in Section 2 and tested its parametric
implication in Section 3. While these tests directly target the information cliff, they are not standard.

In this section, we adopt a well-established set of asset-pricing tools in our empirical tests.
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4.1 Return predictability: the other side of information cliff

The theoretical framework. We utilize the two-dimensional state-space model in Section 3.3 to
drive a necessary and sufficient condition of p, = 0 and formalize the tests. Note that our focus in
this section is the expected return (i.e., the expectation of future returns under the econometricians’
belief or rational expectation), not agents’ subjective expectations of future returns.

In Appendix I, we solve the log price-dividend ratio of the market:
pd; = Apq + Bpay: + Cpazs, (24)
where A4, Bpa, and C,4 are constant, and the log price-dividend ratio of the one-year strip,
sl = A1+ By, + Ciz;. (25)

We define the slope of valuation term structure as the difference between the price-dividend

ratio—valuation level of the whole market—and the valuation ratio of one-year dividend strip:
dr; = pd; = s; = Apa — A1+ (Bpa = B1)y: + (Cpa — C1)z. (26)

An increase in dr; reflects a greater fraction market value coming from cash flows beyond the very
next year, a steepening of the valuation term structure. The next proposition shows that when p_,
the autoregressive coeflicient of expected dividend growth rate z;, is zero, we have dr; and E; [r4 ]

being univariate functions of one another. Hence, the notation, dr, represents “discount rate”.

Proposition 2 (Return predictability under the information cliff) 7The expected return at time t
is a linear function of y;: By[ris1] = Aer + Beryr, Where A, and B, are constant. A necessary and
sufficient condition for p, = 0 is that dr,’s loading on z, is zero, i.e., C,q — C1 = 0, or equivalently,

that dry is a function of only y;, so E;[r+1] is a univariate linear function of dr;, and vice versa.

Therefore, to test p, = 0, we can test the necessary and sufficient condition—that is, dr; drives
the expected return. This link between dr; and the expected return has an intuitive explanation. If

z: lacks persistence (p, = 0), market participants are not informed about growth beyond 7 + 1.2

2Under p, = 0, our model of cash-flow expectations is in line with the belief model in De La O and Myers (2021).
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Therefore, when the valuation term structure steepens (i.e., dr; increases), a greater fraction of
market value is from 7 + 1 onward not due to objectively improved long-run growth but due to a
lower discount rate (a lower y;) that benefits the valuation of long-term cash flows more than that
of near-term cash flows; similarly, when the valuation term structure flattens (i.e., dr; decreases), it
is because of a higher discount rate rather than negative information on long-run growth that brings
down the value of dividends beyond one year more than valuation of dividends within one year.
Note that we do not study the term structure of equity risk premium (the difference in average
returns between short- and long-horizon strips), which has attracted arguably most attention among
studies on dividend strips.”® We only use dividend strip prices for information on state variables,
and our focus is on the expected market return. The term structure that is relevant for our analysis

is the one of strip valuation ratios rather than the term structure of strip average returns.

Predictive regression. Next, we provide a thorough analysis of the return predictive power of

dr;. We start with standard predictive regression for annual returns of S&P 500 index:
Fel = @+ Bdr + €41, (27)

Because we use overlapping monthly data, we adopt Newey and West (1987) standard errors with
18 lags to account for the moving-average structure induced by overlap (Cochrane and Piazzesi,
2005). We also calculate Hodrick (1992) standard errors. Hodrick (1992) shows that GMM-based
autocovariance correction (e.g., Newey and West, 1987) may have poor small-sample properties.
Under the serial correlation in the error term, another concern is the bias induced by the persistence
of the predictor.?” In the appendix (Table A.7), we also report the IVX-Wald test (Kostakis,

Magdalinos, and Stamatogiannis, 2014) that explicitly accounts for predictor persistence.

26There is an extensive literature on the term structure of equity risk premium (e.g., Lettau and Wachter, 2007;
Hansen et al., 2008; Lettau and Wachter, 2011; Binsbergen et al., 2013; Belo et al., 2015; Hasler and Marfe, 2016;
Ai et al., 2018; Backus et al., 2018; Miller, 2018; Bansal et al., 2021; Gongalves, 2021; Gormsen, 2021; Boguth
et al., 2022; Hasler and Khapko, 2023). The difference in average returns of short- and long-term dividend strips
led to decomposing returns of the market and investment strategies to the short-duration or long-duration component
(Gongalves, 2019; Gormsen and Koijen, 2020; Binsbergen, 2021; Knox and Vissing-Jgrgensen, 2022).

2TThe persistence of a return predictor can cause small-sample bias (Nelson and Kim, 1993; Stambaugh, 1999) and
spurious regression (Ferson, Sarkissian, and Simin, 2003).
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Adjusted R? measures in-sample forecasting performance. Following the literature on the
discrepancy between in- and out-of-sample performances (Bossaerts and Hillion, 1999; Goyal and
Welch, 2007), we report the out-of-sample R* and two tests of out-of-sample performance. We form
out-of-sample forecasts as a real-time investor, using data up to time ¢ in the regression to estimate
B, which is then multiplied by the time- value of the predictor to form the forecast. Out-of-sample

forecasting starts from Dec. 1997 when we have at least ten years of data. Out-of-sample R? is

Zt (”l+1 - ft+1)2

Zt (’”t+1 - Ft)z

where 7,1 1s the forecast value and 7 is the average of twelve-month returns (the first is January-

2 —
ROOS -

December 1998). The out-of-sample R lies in the range (—co, 1], where a negative number means
that a predictor provides a less accurate forecast than the historical mean.

We report the p-value of two out-of-sample performance tests, “ENC” and “CW”. ENC is
the encompassing forecast test derived by Clark and McCracken (2001), which is widely used in the
literature. We test whether the predictor has the same out-of-sample forecasting performance as the
historical mean and compare the value of the statistic with critical values calculated by Clark and
McCracken (2001) to obtain a p-value range. Clark and West (2007) adjust the standard MSE t-test
statistic to produce a modified statistic (CW) that has an asymptotic distribution well approximated
by the standard normal distribution, so for CW, we report the precise p-value.

Table 5 presents the results. Column (1) shows that the slope of valuation term structure,
dr, demonstrates a striking degree of return predictive power. The in-sample estimation generates
a predictive R? reaching 24.8%.%® Out-of-sample forecasts deliver an R? of 14.6%, significantly
outperforming the historical mean as shown by the p-values of ENC and CW. The predictive
coeflicient is also large in magnitude, indicating high volatility of the conditional expected return.
A decrease of dr by one standard deviation adds 7.7% to the expected return. Both Newey-West

and Hodrick z-statistics are significant at least at the 1% level. The negative predictive coefficient

Z8Foster, Smith, and Whaley (1997) discuss the potential data mining issues that arise from researchers searching
among potential regressors. They derive a distribution of the maximal R> when k out of m potential regressors are
used as predictors and calculate the critical value for R?, below which the prediction is not statistically significant. For
instance, when m = 50, k = 5, and the number of observations is 250, the 95% critical value for R? is 0.164.
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Table 5 Return Prediction

This table reports the return prediction results. The dependent variable of the predictive regression is the log annual
return of the S&P 500 index, r;1+1. We include the following predictors: the slope of valuation term structure dr;,
price-dividend ratio pd,, the return predictor from Binsbergen and Koijen (2010) uf, and the predictor from Kelly
and Pruitt (2013) KP. We report ¢-statistics for each coefficient based Hodrick (1992) standard error (in squared
brackets) and Newey and West (1987) standard error with 18 lags (in parentheses). Starting from January 1998, we
construct out-of-sample forecasts using rolling regressions estimated with data up to the forecast date. We report in-
and out-of-sample R?s and p-values from the ENC (Clark and McCracken, 2001) and CW test (Clark and West, 2007).

Tt+1
(D (2 (3) 4) Q)
dr; -0.156 -0.228
Hodrick ¢ [-3.354] [-2.924]
Newey-West  (-4.499) (-3.517)
pd; -0.199 0.141
[-2.367] [1.721]
(-2.747) (1.209)
uf 2.584
[2.313]
(2.804)
KP,; 0.895
[2.960]
(2.857)
N 372 372 372 372 372
R? 0.248 0.138 0.156 0.149 0.264
00S R? 0.146 0.004 -0.032  0.041 0.180
p(ENC) <0.05 >0.10 >0.10  <0.05 <0.01
p(CW) 0.022 0.200 0.303 0.031 0.021

of dr suggests that one can form a market timing strategy betting against the slope of valuation term
structure: reduce market exposure when dr increases. An out-of-sample R? of 14.6% in column
(1) of Table 5 implies that the Sharpe ratio of this strategy is 0.58, which is much higher than the
Sharpe ratio of 0.37 from the buy-and-hold strategy in Campbell and Thompson (2008).?°
Column (2) of Table 5 reports the results for pd, the most commonly adopted return predictor.
Its predictive power is much weaker than that of dr across all metrics. Its in-sample R? is almost
half of that of dr, and pd barely exhibits any out-of-sample predictive power with R? equal to 0.4%.
Inboth ENC and CW tests, pd fails to beat the historical mean with any statistical significance. The
IVX-Wald test of Kostakis, Magdalinos, and Stamatogiannis (2014) in Table A.7 in the appendix

also supports the significant predictive power of dr while rejecting that of pd.

21n the Internet Appendix, we show how to calculate the Sharpe ratio based on the out-of-sample R.

30



Next, we compare dr with two return predictors that are conceptually related. Binsbergen and
Koijen (2010) extract information about state variables that drive the conditional expected return
and expected cash-flow growth by estimating a latent-state model. Our approach differs as we do
not estimate or filter the state variables but instead rely on observable state-variable proxies, such as
dr and pd. In Column (3) of Table 5, we follow the procedure in Binsbergen and Koijen (2010) to
construct their return predictor, uf". While uf outperforms pd, its predictive power is significantly
weaker than that of dr across different metrics in our sample period.

Kelly and Pruitt (2013) deploy another filtering method that utilizes the cross-section of
market-to-book ratios of individual stocks. These valuation ratios are correlated with state variables,
but, as shown in Internet Appendix 1.2, they contain firm-level noise that is orthogonal to the
expected market return. Kelly and Pruitt (2013) use partial least squares to reduce noise. Our
approach differs as dr does not contain firm-level noise under the information cliff. Following
the procedure in Kelly and Pruitt (2013), we construct their return predictor, denoted by KP. In
column (4) of Table 5, we report the results. KP significantly outperforms pd but underperforms
dr; across metrics such as Newey-West ¢-statistic, Hodrick z-statistic, in-sample R?, out-of-sample
R?>, ENC, CW, and IVX-Wald test reported that is in Table A.7 in the online appendix.

In the Internet Appendix, we demonstrate the robustness of our results by repeating the
analysis for alternative forecasting targets, even though our theoretical framework requires the
forecasting target to be S&P 500 return as dr; is about the valuation term structure of S&P 500. In
Table A.8, we replace the S&P 500 annual return with the excess annual return. In Table A.9 and

A.10, we consider the Fama-French market portfolio return and excess return, respectively.>°

30As we have made clear, our goal is to predict annual returns (one period-ahead in our model). However, we also
show that dr demonstrates superior return predictive power at a monthly horizon. Our baseline results are reported in
Table A.11, and see Table A.12 for results on predicting monthly S&P 500 excess return. Table A.13 and Table A.14
report the results on predicting the monthly Fama-French market portfolio return and excess return, respectively.
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Table 6 Rolling Estimates of the Persistence of Expected Cash-Flow Growth

This table reports summary statistics (mean, median, and percentiles) of rolling-window estimates of p., the autore-
gressive coefficient of expected cash-flow growth rate. Each estimate is obtained from a three-year window of weekly
observations using equation (23) applied to IGA aggregate earnings growth forecasts for the S&P 500 Index.

count mean 10% 15% 20% 25% 50%  75%  80%  90%
Pz 384 0.025 -0.130 -0.105 -0.082 -0.066 0.001 0.074 0.094 0.196

4.2 Rolling-window estimation

Our full-sample estimation in Section 3.4 has shown that p, is close to zero, and our full-sample
estimation of return predictive regressions has also demonstrated that dr has very strong predictive
power, lending further support to p, = 0 as the return predictive power of dr corresponds to
pz = 0 (see Proposition 2 of Section 4.1). In the following, we empirically examine validity of this
necessary and sufficient condition through rolling-window estimation. In each rolling window, we
estimate p, as in Section 3.4 (Table 3) and predict returns using dr. We show that in around 20%
of the rolling windows where p, deviates from zero, the predictive power of dr is indeed weaker.
Each rolling window contains three years of weekly observations of analyst forecasts.’! We
summarize the statistics of the rolling-window estimates of p. in Table 6. Naturally, how agents’
belief formation model may vary over time, so the estimate, p., fluctuates. However, its mean and
median across rolling windows are close to zero, in line with the full-sample estimate in Table 3.
In the next proposition based on the model in Section 3.3, we show that the value of p; is directly

linked to the forecasting error from using dr to predict returns. The proof is in Appendix 1.4.

Proposition 3 (o, and return forecast errors) Let v;,| denote the forecast error from predicting
ri+1 with dry, and let p, denote the autoregressive coefficient of expected cash-flow growth z; in

equation (17). If p; > 0, then v,41 is positive. If p; < 0, then v,41 is negative.

The theoretical result in Proposition 3 shows the tight connection between dr’s return predic-

tive power and p, = 0, a parametric manifestation of the information cliff, from a new perspective.

3IThe results are similar if we use alternative window lengths from one to five years (available upon request). Our
sample period is 1988-2019. The first estimate of p, uses three years of IGA data starting in 1985.
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Figure 6 Average Return Prediction Errors Across Subsamples by p, Estimate

This figure plots mean return forecast errors computed in-sample and out-of-sample using dr, as the predictor. The
sample is divided into four categories based on three-year rolling-window estimates of p,: significantly negative,
insignificantly negative, insignificantly positive, and significantly positive (significance determined at the 5% level)
The number of observations and their percentage of the total sample are indicated below each bar.
When p, deviates from zero, the return forecasting error of dr exhibits systematic patterns. This re-
sult receives direct empirical support. in Figure 6, we plot the average in-sample and out-of-sample
forecasting errors for four categories of rolling windows: 1) the estimate of p, is significantly
negative; 2) the estimate of p, is negative but statistically insignificant; 3) the estimate of p, is
positive but statistically insignificant; 4) the estimate of p, is significantly positive. As predicted
by Proposition 3, the sign of return forecasting errors aligns well with that of the estimate of p,.

In Table 7, we report results of regressing dr’s in- and out-of-sample return forecasting
errors on the estimate of p, or the sign of the estimate of p,. The number of observations for this
regression is the number of rolling windows. As predicted by Proposition 3, we obtain a positive
regression coefficient, in line with the message in Figure 6.

In summary, Proposition 2 states a necessary and sufficient condition of p, = 0, connecting

it to the return predictive power of dr, the slope of valuation term structure. Proposition 3

characterizes dr’s return forecasting error varies with p,’s deviation from zero, strengthening the
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Table 7 Time-Varying p, and Return Predictability

This table reports the regression results examining the relationship between return prediction errors and rolling-window
estimate of the autoregressive coefficient of expected cash-flow growth rate. The dependent variables are the in-sample
residuals (&,41) and out-of-sample forecast errors (v;1) from return predictive regressions based on dr,. Independent
variables include the expected cash-flow growth persistence parameter g ; (estimated using three-year rolling windows
of analyst forecasts) and an indicator variable I5_, >0 that equals one for o, ; > 0. Newey-West z-statistics (18 lags) are
reported in parentheses. The sample period is 1998:01-2019:12, beginning with the first out-of-sample forecast.

Er+1 U+l
(D 2 3) 4
Intercept -0.011  -0.057 -0.046 -0.078
(-1.127)  (-3.217) (-4.076) (-3.982)
Pz 0.556 0.469
(5.143) (4.599)
1(p,, > 0) 0.098 0.071
(5.039) (3.141)
N 252 252 252 252
R? 0.173 0.110 0.094 0.043

link between dr as a return predictor and the information cliff.

Therefore, the other side of cash-flow information cliff is return predictability. This result
echoes the findings that the absence of cash flow predictability indicates return predictability (e.g.,
Cochrane, 2008) but differs in meaningful ways. First, as we have shown in Section 2, cash-
flow growth within one year horizon is in fact highly predictable. Second, the return predictive
power does not come from the traditional price-dividend ratio but from the slope of valuation term
structure, dr. In the last part of our paper, we compare dr against the other return predictors from
the literature and nonlinear (machine learning) methods. Under our result from Proposition 2, the

strong return predictive power of dr lends support to the existence of information cliff.

4.3 Benchmarking the return prediction results

Before we embark on a battery of tests of dr’s return predictive power against that of other predictors,
we want to highlight the intuitive nature of using the slope of valuation term structure to predict
returns under the cash flow information cliff. When dr increases, the steepening of the valuation
term structure suggests that a greater fraction of market value comes from cash flows at longer

horizons. If market participants are not informed about growth beyond the very next year (under
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Figure 7 In-Sample and Out-of-Sample R> Wedge between dr and Other Return Predictors

This figure compares annual return prediction R> between dr, and other predictors from prior studies. Panels A and
B report, respectively, the differences in in-sample (IS) and out-of-sample (OOS) R? between dr and an alternative
predictor. A positive value signifies that dr has a stronger predictive power than the alternative within the same sample
period. Most predictors are from Goyal and Welch (2007) and include the price-dividend ratio (pd), the default yield
spread (dfy), the inflation rate (infl), stock variance (svar), the cross-section premium (csp, available in 1988-2002), the
dividend payout ratio (de), the long-term yield (Ity), the term spread (tms), the T-bill rate (tbl), the default return spread
(dfr), the dividend yield (dy), the long-term rate of return (ltr), the earnings-to-price ratio (ep), the book to market ratio
(bm), the investment-to-capital ratio (ik), the net equity expansion ratio (ntis), the percent equity issuing ratio (eqis),
and the consumption-wealth-income ratio (cay). KP is the predictive factor extracted from 100 book-to-market and
size portfolios from Kelly and Pruitt (2013). dp©°"" is the dividend-price ratio corrected for option-implied dividend
growth in Golez (2014) (available in 1994-2011). u! is the filtered series for expected returns following Binsbergen and
Koijen (2010). SII is the short interests index from Rapach, Ringgenberg, and Zhou (2016) (available in 1988-2014).
SVIX is an option-implied lower bound of annual equity premium in Martin (2017) (available in 1996-2012).

the information cliff), the steepening must be driven by a decline in the discount rate that boosts
valuation of long-duration cash flows more than that of near-term cash flows simply because the
valuation of long-duration cash flows is more sensitive to discount-rate variation. Likewise, when
dr decreases, the flattening of valuation term structure is driven by a higher discount rate. In

summary, under the cash flow information cliff, the slope reflects the discount rate.

Comparing the slope and other predictors. We have compared the return predictive power of
dr with that of pd, u', and KP. Figure 7 compares dr with more predictors from the literature,
including the default yield spread (dfy), the inflation rate (infl), stock variance (svar), the cross-
section premium (csp), the dividend payout ratio (de), the long-term yield (Ity), the term spread
(tms), the T-bill rate (tbl), the default return spread (dfr), the dividend yield (dy), the long-term

rate of return (Itr), the earnings-to-price ratio (ep), the book to market ratio (bm), the investment-
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Figure 8 Return Prediction: The Role of Nonlinearity

This figure shows the out-of-sample (O0S) R? of the slope of S&P 500 valuation term structure dr and machine-
learning (ML) models in Kelly, Malamud, and Zhou (2024). We forecast annual S&P 500 returns at the monthly
frequency, with OOS prediction beginning in 1998:01 and OOS R? computed following Goyal and Welch (2007). The
ML models use a 12-month training window, y = 2, and a Random Fourier Features (RFF) count P ranging from 2 to

12,000. The darker blue bars represent the ML models using 15 predictor variables (as in Kelly, Malamud, and Zhou,

2024). For the lighter blue bars, we augment the signal set with valuation ratios (i.e., s°>, s, s'*, dr, and pd). The

figure compares the best OOS R? for each shrinkage parameter against the OOS R? achieved using dr (the orange bar).
to-capital ratio (ik), the net equity expansion ratio (ntis), the percent equity issuing ratio (eqis), and
the consumption-wealth-income ratio (cay), which are summarized in Goyal and Welch (2007),
and others that are proposed more recently, such as adjusted dividend yield, dp©°"" (Golez, 2014),
short interest index, SII (Rapach, Ringgenberg, and Zhou, 2016), and SVIX (Martin, 2017).32 We
also include pd, uf', and KP. In Figure 7, we report in- and out-of-sample R? of dr minus those
of other predictors. All columns are in the positive region, indicating dr performs better.

Finally, in the Internet Appendix, we repeat the exercise in Figure 7 for alternative forecasting
targets, such as S&P 500 excess annual return (Figure A.2), Fama-French market portfolio annual

return (Figure A.3), and Fama-French market portfolio excess annual return (Figure A.4).

32Note that the dividend yield (dy) is not the inverse of price-dividend ratio (pd) because in the denominator of dy
is the lagged market value (not the current value).
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The role of nonlinearity. Following Lettau and Wachter (2007), our theoretical framework is an
exponential-affine model. This framework motivates our empirical analysis and facilitates the in-
terpretation of our results. One concern over this type of model is nonlinearity: the valuation ratios,
pd, and dr may no longer be linear functions of state variables (or vice versa), and accordingly,
our forecasting exercises may have mistakenly ignored important nonlinearity.

Kelly, Malamud, and Zhou (2024) develop a method based on ridge regressions to account
for nonlinearity. Given a set of predictors (signals), their forecasting models can be expanded
progressively to incorporate nonlinear terms (“model complexity”). We replicated their analysis:
given a value of ridge shrinkage parameter that indexes a class of forecasting models, we plot the
out-of-sample R? against the degree of model complexity (see Figure A.5 in the appendix). In
Figure 8, we report the maximum R? under each value of ridge shrinkage parameter and compare
it against the R? obtained from the univariate predictive regression with dr as the predictor. We
consider two cases, one with a signal base including all of our strip valuation ratios (state variable
proxies) and other predictors and the second signal set including only the other predictors.

The machine learning model is essentially a signal aggregator with the optimal degree of
complexity and nonlinearity. The fact that the simple OLS with dr delivers an out-of-sample R?
above that of the nonlinear model suggests that the linear structure generated from the exponential-
affine model is an adequate approximation.>> Overall, our analysis has two implications. First,
in terms of raw signals, dr contains sufficient information, so one may not seek “big data” (i.e.,
alternative signals) for forecasting market returns. Second, combining all signals (including our state
variable proxies) nonlinearly does not improve forecasting performance, validating our exponential-

affine framework that implies a linear relationship between state variables and the expected return.

Discussion: Spanning tests. The bond literature highlights the critical issue of unspanned state

variables (i.e., state variables that are not spanned by bond yields, the equivalent of dividend strip

33Note that due to estimation errors, the machine learning model may underperform our simple OLS with dr as the
predictor even when dr and other valuation ratios are included as signals.
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valuation ratios in the bond markets).>*

We find that this is not the case in our analysis of expected
stock-market return. We have performed the following spanning tests in the appendix. In Table
A.15, we conduct bivariate predictive regressions with dr as one predictor and the other being one
of the alternative predictors. Across all bivariate predictive regressions, dr, always has a coefficient
that is statistically significant at 1% level, while almost all the other predictors are driven out,
showing an insignificant coefficient. The short interest index has a significant coefficient but, as
shown in Figure 7, its out-of-sample R? is deep in the negative territory (below the 15% out-of-
sample R? of dr by more than 25%). Inflation also has a significant coefficient in Table A.15 but
also an out-of-sample R? close to zero. Table A.16 reports an alternative spanning test. We run
trivariate predictive regressions with dr, pd, and the third predictor being one of the alternative

predictors. As in the bivariate predictive regressions, the coefficients of all the alternative predictors

are insignificant at 1% (except SII). Moreover, the predictive coeflicient of pd is insignificant.

5 Conclusion

This paper characterizes an “information cliff’—a structural feature of the stock market where the
supply of information about aggregate cash flows drops precipitously beyond a one-year horizon.
In contrast to a large literature that emphasizes biases in how agents process information, we
begin with the source of the information itself. We provide strong evidence for this cliff using the
horizons of corporate guidance. By exploring the timing of information supply (Guo, 2025; Guo
and Wachter, 2025a), we demonstrate the connection between information supply and the sharp
decline of analyst forecast accuracy at the one-year horizon, contributing to the growing literature
on market participants’ short- and long-term cash-flow expectations.

To understand the asset pricing implications of this information structure, we develop a

flexible framework that extends the model of Lettau and Wachter (2007). A key methodological

34Since Duffie and Kan (1996), using bond yields to map out the state variables has been key to the estimation of
term structure models (Duffee, 2013). Unspanned state variables include stochastic volatility and macro factors (e.g.,
Collin-Dufresne and Goldstein, 2002; Cooper and Priestley, 2008; Bikbov and Chernov, 2009; Ludvigson and Ng,
2009; Andersen and Benzoni, 2010; Duffee, 2011; Joslin et al., 2014; Cieslak and Povala, 2015).
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innovation of our paper is to empirically discipline the model’s structure. By analyzing the valuation
ratios of aggregate dividend strips that map out the (latent) state variables, we show that two state
variables, which can be rotated to represent expected returns and expected dividend growth, are
sufficient to capture the dynamics of the aggregate stock market.

This empirically-grounded two-dimensional structure allows us to draw a sharp link between
the information cliff and canonical objects in asset pricing. The cliff implies that expected cash-flow
growth must lack persistence; any persistent component would provide a basis for forecasting growth
beyond one year, contradicting the cliff. We test and confirm this prediction: the autoregressive
coeflicient of expected aggregate cash-flow growth is indistinguishable from zero.

Our model also shows that under the information cliff, the expected market return is a
univariate function of the slope of the valuation term structure. Intuitively, with no new information
about long-term growth, a steepening of the slope—where the valuation of distant cash flows rises
relative to near-term cash flows—must be driven by a lower discount rate. Empirically, we find this
slope is a remarkably robust return predictor, outperforming a large set of established predictors in
both in-sample and out-of-sample tests and subsuming their forecasting power. A linear regression
with the slope as a predictor outperforms non-linear aggregator of a large set of predictors.

In summary, our paper documents the information cliff and its implications on the expected
cash-flow growth and expected return. Our findings also shed light on potential market mispricing.
The success of the valuation slope as a return predictor suggests that while market participants
are well-informed about the near term, mispricing is concentrated in the valuation of long-term
cash flows. This shifts the focus of market timing from betting against the overall valuation level
(e.g., the price-dividend ratio) to betting against the valuation term structure. The information
cliff provides a rational, information supply-side foundation for why long-horizon expectations can
appear untethered from fundamentals (Bordalo et al., 2024b) and why the relative pricing of long-

and short-term cash flows holds the key to excess volatility and time-varying expected returns.
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Internet Appendix
“The Information Clift”

Appendix I: Derivation

I.1 Solving the valuation ratios

The price-dividend ratio of the dividend strip with maturity n, P,;/D;, satisfies the following
recursive equation

Py [ D41 Py141
=~ =K, | My —— : (A.1)
T D D
We conjecture that
P
In ( D””) =A(m)+Bm"X,. (A.2)
t

Substituting this expression and expressions of stochastic discount factor and dividend growth
into the recursive equation, we have

exp{A(n)+B(n)" X,}

=E,; [exp {—rf - %A:Z/l, - €41+ g+ O'I—)FEH.] +An-D+Bn-1" Xt+1}]
=E; [exp {g, —rf = %/ltTZ/l[ +A(n-D+Bn-1)"IX,+(cp-A;+0oxB(n-1))" e,+1}]
=exp {g, S %/1:2/11 +A(n-1)+B((n-1)"TIX,
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+% (O'D+UxB(n—1))TZ(UD+GxB(n—1))} (A.3)

The coefficients on X, should match B (n) on the left hand side, so we have
B(n)= (1" -0%ox) B(n-1)+¢ — 6Z0p. (A.4)
The constants must sum up to A (n) on the left hand side, so we have
An)=A(n-1)+g—-7—(op+oxB(n-1)" =1+ (A.5)

% (ocp+oxB(n—1))"Z(op+oxB(n-1)).

The fact that P? = D, implies the boundary conditions, A (0) = B (0) = 0, which pins down a
solution of A (n) and B (n).

Al



Finally, we solve the log price-dividend ratio of the aggregate stock market. We conjecture
pd; =In(P,/D,) = A+ B"X,, (A.6)

and proceed to solve A and B. Following Campbell and Shiller (1988), we log-linearize the stock
market return

mkt
1 =Ko+ K1pdi1 — pds + Adpy

=ko— (1 —k1)A—=BT (I-111) X; + g; + (k10xB + op) ' €41 (A7)

r

Under the no-arbitrage condition, we have

1 =B, [My1 exp(r™h]. (A.8)

t+1

We follow the same method of matching undetermined coefficients in the analysis of dividend strip
valuation ratios and solve

1
1—K1

- 1
A= g-T7+ko— (kjoxB+op) T+ > (kioxB)" = (kjoxB) + (kjoxB) " Zop

(A.9)
B=(1-xI" - k10Z0x) " (¢ —6Z0p —7). (A.10)

I.2 Valuation ratios from the cross section

Consider an individual stock i. The dividend dynamics of firm i depend not only on the aggregate
state variables, X;, but also on the firm i-specific state variables, Z;;, that is K;-dimensional and
independent from X;. Without loss of generality, we assume that Z; ; evolves as a first-order vector
autoregression

Zivn1 = QZiy + 07 4Vj 141, (A.11)

where v; 41 is a N;-by-1 vector of i-specific news that has a normal distribution N (0, %;) and
is independent over time and independent from the aggregate shocks €,+1. We use subscript i to
differentiate firm i from the aggregate variables (without subscript /) and other firms (with subscript
J#0D).

The dividend growth rate of firm i loads on the aggregate and idiosyncratic shocks

Di t+1

, T T

In ( D = it + 0y p€i+l + O,V (A.12)
it

where the expected dividend growth rate is given by

_ 1 1
Qi =¢; Xi+6 Ziy+3; — EUiTDZUi,D - EO'iTUEiO'f,u, (A.13)

which loads on the aggregate state variables, X;, and firm i-specific state variables, Z; ;.
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The ratio of firm i’s dividend strip price, Plflt, to firm i’s current dividend is

n

P
D—’,’t =exp{A; (n)+B; ()" X, +C; (n)" Zi} (A.14)

1,1

where A; (n), B; (n), and C; (n) are firm i-specific, deterministic functions of n given by the
recursive equations
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with the initial conditions
A;(0) =0, B; (0) =0, and C; (0) =0. (A.18)
The price of firm i’s stock, P;, is the sum of all its dividend strips

Pi; « P?t « T T
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In Appendix I, we use the log-linearization method of Campbell and Shiller (1988) to solve an
approximate exponential-affine form, so the log price-dividend ratio of stock i is

Pi; T T
In D ~Ai+B; X;+C; Z;;. (A.20)

it

Because Z;; is independent from X;, recovering the state space X; using individual stocks’ price-
dividend ratio brings in noise. In a forecasting context, Kelly and Pruitt (2013) deal with this issue
using partial least squares, which is a method to compress the cross-section of valuation ratios into
signals (about the state variables) that are most relevant for the forecasting targets.

1.3 Solving the two-dimensional state space model and Proposition 2

We conjecture that the market price-dividend ratio is exponential-affine in the state variables, so
the log ratio is
pd[ = ln (SZ/D[) =A+ By[ + CZI.

Next, we use the log-linearization of Campbell and Shiller (1988), i.e.,

T4l = Ko + K1pdip1 — pd; + Adyq,
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and substitute this log market return into the no-arbitrage condition

E; [Mpy1 exp{ri1}] = 1.

to obtain
1
E; [exp {—rf - E/ltz(O'ﬂTEO',l)z - /l,a'/lTem + ko + K\ pd41 — pd; + Ad,+1}] =1 (A.21)
Using the conjecture of pd,; and pd,, and the specification of g, and Ad,,, we obtain

E;

1 _ 1
exp { —rp— 5/1?(0’}20‘4)2 — A0 €1 +ko—A—By, —Cz+2,+8 — 50‘520'1) + 0 €rl
+K1A + K1 B(pyy; + 0 €41) + K1C (021 + T, €41) ” =1 (A.22)

For the conjecture of pd, functional form to hold, the coefficient on z; is zero, so we obtain

1

C=——
1 —«k1p;

(A.23)
Collecting all terms with shocks at # + 1 and using the moment-generating function, we obtain
1
E; [exp {—/I,O'ATE,H + O'EEM + KlBO'yTem + K1C0'ZTet+1}] = exp {E/ltz(O'/;rZO',{)z (A.24)
T 1 T

—(op +k1Boy +k1Co;) o, + E(O'D +k1Boy +k1Co) Z(op +ki1Boy + k1Co)

Substituting this expression into the no-arbitrage condition, we obtain
_ 1 4 - —
exp{-rf+ko—A—-By;—Cz;+ 2, +8 — EO'DEO'D —(op +k1Boy +k1Coy) Zo(A+y;)

1
+k1A +Kk1Bpyy; + k1Cp 2 + E(O'D + k1Boy + k1Co;) " E(op + k1 Boy + K1CO’Z)} =1 (A.25)

For the conjecture of pd; functional form to hold, the coefficient on y; is zero, so we obtain

(op +k1Coy)"Z0,

B= =
I +k10y Zop — k1py

(A.26)

Finally, all the constant terms should add up to zero, so we obtain

A g— ry+ Ko — %O‘;ZO‘D + %(0’1) +KlBO'y +K1CO’Z)TZ(O'D +K1B0'y +K1CO‘Z - 20',1/_1)

1-« 1
(A.27)
In the main text, to clarify the notations, we use A4, B4, and Cpq4 to denote A, B, and C above,

respectively.
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Next, we solve the time-f log price-dividend ratio of the dividend strip that matures at 7 + 1.
The no-arbitrage condition dictates

D
E, [Mm ”1] =1, (A.28)
Pl
t
or equivalently
D, D
E; [Mﬂ.lﬁp—lt] =E [Mt+1 exp {gz + 0‘56,+1 - Stl}] =1, (A.29)
r Iy
SO we obtain
1
E, [exp {—rf - E/l?(O‘IZO’,l)Z — 0] €41 + &1 + T €s1 — s,l}] =1. (A.30)

We conjecture
Stl = A] + Blyt + ClZz-

Substituting this conjecture, the specification of g;, and the specification of A; into the no-arbitrage
condition, we obtain

Eq

1 _ _
exp {—rf - 5(/1 +y) (0] Z2)? = (A+ )0 €41

_ 1
+7;+ 8 — EO'EZO'D +a'get+1 — A - By — Clzt” =1.

Using the moment-generating function to simplify the expression, we obtain
exp{-rr+z+g—A1—Biy,—Ciz,— 0, Zop(A+y,)} = 1. (A.31)

For the conjecture of s,l functional form to hold, the coefficient of z, and the coefficient of y, must
be zero, so we obtain
Ci=1, (A.32)

and
B] = —O'IZO'D. (A33)

Finally, the constant terms add up to zero, so we obtain
Al =g-ry—o,Zopd (A.34)
Finally, we solve the conditional expected market return. First, we start with E;[r;] =

ko + k1B [pd;+1] — pd; + g;. Using the expression of pd;.i, pd;, and g;, and the specifications of
law of motion of z; and y,, we obtain

_ 1
Ei[r1] =k0o— (1 —k1)A+g — 50’520'1) - (1 =«k1py)By;. (A.35)
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We collect the constant terms into A,, and define the coefficient of y, to be B,,.

1.4 Proposition 3: p, and return forecasting errors

Proof. We know that the expected return is a function of the price of risk y;:
E, [rt+1] = A + Berys,

and that
dr; = Apg — A1+ (Bpg — B1)y: + (Cpa — C1) 2.

Combining the two equations, we have

B,,
B¢ [ris1] = Aer + Bl— [dri = Apa + A1 = (Cpa — C1)z] (A.36)

B,,
= const. + B— [dri = (Cpa — C1)z] (A.37)
1

If p; = 0, E;[r4+1] = const. + 3
time-t variables:

B Z ddr,. The forecast error is a white noise independent of
p

Vel = Fegl — Be[ri41] = €41

However, if p, # 0 but the investor still uses equation (A.37) to forecast 7 + 1 return, the forecast
error is then

Ber(Cpa — C1)
Virl = 41 — |Const. + Bl_—eerddrr] =Tl — [Ez[”zﬂi + erBli—BWZI

o BalCumC) By (1)

t+1 Bl _ de t t+1 Bl _ de 1— K12 t

The correlation between p,; and v, is therefore
B., 1
C , =——C -1
Orr(pZ,l Vl+1) B] _ de orr (pZ,l‘ (1 _ Klpz’t )Zl)

Based on our findings on return predictability, dr; negatively predicts future returns. Therefore, the
coeflicient of dr; in equation (A.37) , is negative. Under this condition, we obtain

> B|-B
1
sgn (Corr(pzs, vir1)) = sgn (Cov (pz,,, (W — 1) z,))
- Z,t
2
K Z
— Sgn E lpZ,l t _ E (pz’t) E( KlpZ,th )
1 — k102 1 —kipzs

As demonstrated by the rolling estimation results in Table 6, p,; on average is close to zero (see
also Table 6, we have E (p,,) ~ 0. Using 1-year earnings growth forecasts from IBES Global

lpztt

Aggregate (IGA) as a proxy for z; and «; = 0.98, we calculate the estimate of E ( ) in our
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sample to be 0.005626 with p-value < 0.01, which implies

2
K1p% ;2
sgn (Corr(pzs vir1)) = sgn |E Sl 1o,
I —k1pzs

I.5 Deriving the Sharpe ratio of market-timing strategies

Following Campbell and Thompson (2008), we assume that the excess return can be decomposed
as follows:

Tral = U+ X+ &4

where y is the unconditional mean. The predictor x; has mean 0 and variance o=, independent
from the error term &;,;. For simplicity, we assume that the mean-variance investor has a relative
risk aversion coefficient y = 1. When using x; to time the market, the investor allocates

M+ X
ay =

o}

to the risky asset and on average earns an excess return of

2 2
+ +x+ +

E (aer—]) — E ((l’l 'xf) (/’L > Xt 8f+l)) — H 20—)6
0-8 0-8

The variance of the market-timing strategy is

Var (a,r:41) = Var 5
0-8

(e +2x;) (u+x; + 8t+1)]

The (squared) market-timing Sharpe ratio s% can be written as

X

2 [E (Clﬂ’t+1)]2 _

12 + 02
Sl *

= =A
Var (a;71+1) o2

where A is a constant that depends on Var [(u +x;) (1 +x; + &41)] and (u? + 02) /o 2.
Given the buy-and-hold Sharpe ratio s,

2
2_ _ M
0= "5 5
oy +0;
and the predictive regression R,
o2
R2 —_ X
- s
o2+ 02

we obtain the relationship between the buy-and-hold and market-timing Sharpe ratios as

2 2 2 2 2 2
K +O-X—A' u-+o; _ A sg+ R

o2 (02 +02) (1 -R? " 1-R2

A7



When the predictor has no predictive power, we know that R* = 0 and 5o = s;. We therefore pin
down the constant A = 1 and obtain

sg+R2 A3

Using data back to 1871, Campbell and Thompson (2008) obtain a long-term estimate of the
market buy-and-hold Sharpe ratio (“so”) of 0.37 (annualized). If a mean-variance investor uses
the information from dr to construct a market-timing strategy, with an out-of-sample R? of 14.6%,
she would obtain a Sharpe ratio (“s;”) of 0.58, representing a 54.7% improvement over the Sharpe
ratio achieved by the buy-and-hold approach.
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Appendix II: Estimating A State Space Model of Cash Flows

Table A.1 Estimating the Persistence of Expected Cash-Flow Growth (State Space Model)

This table presents the estimation results for four models of dividend growth rates: (1) the unrestricted state-space
model as specified in equations (16) and (17) in Section 3.3; (2) the restricted state-space model with the constraint
pz = 0; (3) the MA(1) model (Ad41 = g + 0p&rs1 + Yop&r); and (4) the AR(1) model (Adyy1 = g + yAdy + 0pEry1).
Panel A reports results using the annual (non-overlapping) dividend growth of the S&P 500 index, while Panel B
reports results using the annual (non-overlapping) dividend growth of the Fama-French market portfolio. For each
model, the log-likelihood (“LogL”), AIC, and BIC are provided. ¢-statistics are presented in squared brackets.

0z g b4 0 X 0% LogL AIC BIC
Panel A: S&P 500
Unrestricted  0.26 0.06 0.00 0.11 74.44 -140.88 -128.97
[0.94] [3.01] [0.00] [1.70]
Restricted 0.06 0.08 0.08 71.36 -136.72 -127.79
[4.68] [0.00] [0.00]
MA(1) 0.06 0.10 0.41 76.41 -146.82 -137.89
[3.38] [13.45] [6.11]
AR(1) 0.04 0.11 0.26 74.50 -142.99 -134.06
[3.64] [14.90] [3.51]
Panel B: MKT
Unrestricted  -0.08 0.06 0.00 0.15 4396 -79.92 -69.8
[-0.06] [3.86] [0.00] [0.12]
Restricted 0.06 0.11 0.11 43.67 -81.34 -73.8
[3.62] [0.10] [0.10]
MA(1) 0.06 0.15 -0.09 44.00 -82.00 -74.4
[3.94] [6.99] [-1.02]
AR(1) 0.06 0.15 -0.08 4396 -81.93 -74.39
[3.89] [6.98] [-0.87]

An alternative method to estimate p, is to directly estimate the state-space model given by
equations (16) and (17) with the realized dividend data. Using the standard Kalman filter, we
obtain estimates of p,. For comparison, we report results for both the S&P 500 index and the
Fama-French market portfolio (“MKT”). We obtain dividend data for the Fama-French market
portfolio (the CRSP NYSE/NYSEMKT/Nasdaq Value-Weighted Market Index). Since the model
is set up at annual frequency, we use annual (non-overlapping) dividend growth data. The sample
spans 1926 to 2019.3% The results are reported in Table A.1, where Panel A and B are for S&P
500 and MKT, respectively. In the row “Unrestricted” of Panel A and B of Table A.1, the estimates
of p, are statistically indistinguishable from zero.?® The restricted model with p, = 0 generates
similar likelihood and information criteria, indicating that allowing p, to be a free parameter does not
significantly improve the model fitness. We also estimate MA(1) and AR(1) models for comparison

33We also used the longest available S&P 500 dividend series starting from 1872 and obtained similar results. The
results are available upon request.

36The Kalman filter assumes that the shocks to realized and expected dividend growth are uncorrelated. In Figure
A.1, we demonstrate the robustness of our estimate of p, by considering different values of the correlation, from -0.9
to 0.9, while fixing the volatility of realized-dividend shock at the estimate in Panel A of Table A.1. The estimated p,
barely moves with the value of shock correlations in [-0.9, 0.9].
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Figure A.1 p, Estimates from the State-Space Model with Correlated Shocks

This figure presents the estimated values of the expected dividend growth autoregressive coefficient (p,) in unrestricted
state-space models, as discussed in Section 3.3, with varying correlations between the Ad and z shocks. The correlations
range from -0.9 to 0.9, and the volatility of the Ad shock is adjusted to match the estimated 6p from the state-space
model with uncorrelated shocks. Panel A uses the annual (non-overlapping) dividend growth of the S&P 500 index,
and Panel B uses the annual (non-overlapping) dividend growth of the Fama-French market portfolio.

and find that the estimates of the autoregressive coefficient, i.e., y and y for MA(1) and AR(1),
respectively, are statistically indistinguishable from zero. In sum, the state-space approach delivers
a similar message as the estimation based on analyst forecasts: The autoregressive coefficient of
expected cash-flow growth rate is close to zero.
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Appendix III: Additional Tables and Figures

Table A.2 Predicting Earnings Growth with Analyst Forecasts: By Month of the Quarter

This table reports the results of regressions that predict earnings growth at various horizons with analyst forecasts, with
the regression samples separated by month of a quarter to highlight the effect of information supply. The dependent
variables are realized earnings growth from IGA of next year, year after next, the third year into the future, and the
average earnings growth between years 3 to 5. The independent variables are analysts’ forecasts of one-year earnings
growth between ¢ + 7 and ¢ + 7 + 1 across horizons (E;“ [Aesirt1], for T = 0,1,2) from IGA and the self-aggregated
long-term earnings growth forecasts (LT G,) of the S&P 500 Index. The ¢-statistics are calculated based on Newey-West
standard errors with 18 lags are reported in parentheses.

Aesyq Aesin Aerws  Neposss
ey (@) 3) “
Panel A: First month of the quarter
Intercept -0.048 -0.099 -0.134 0.019

(-4.056)  (-2.491) (-1.883)  (0.236)
EA [Ae1]  1.184

(21.935)
EA [Aessn] 1.168
(4.078)
EA [Aesi3] 1.503
(3.045)
LTG, 0.373
(0.587)
N 128 128 128 122
R? 0.78 0.18 0.15 0.01

Panel B: Second month of the quarter

Intercept -0.059 -0.128 -0.107 -0.001
(-4.020) (-2.430) (-1.408) (-0.015)
EA [Aer1]  1.202

(17.752)
EA [Aersn] 1.346
(3.801)
EA [Aess3] 1.340
(2.588)
LTG, 0.541
(0.855)
N 128 128 128 122
R? 0.69 0.18 0.12 0.02

Panel C: Third month of the quarter

Intercept -0.056 -0.125 -0.119 0.011
(-4.024) (-2.485) (-1.532) (0.147)
EA [Aer1]  1.209

(19.611)
EA [Aersn] 1.318
(3.852)
EA [Aess3] 1.428
(2.694)

LTG, 0.439

(0.696)
N 128 128 128 122
R? 0.72 0.18 0.13 0.01
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Table A.3 Forecasting Earnings Growth Across Horizons: Controlling for Extrapolation

This table reports the results of regressions that predict earnings growth at various horizons. The dependent variables
are realized earnings growth from IGA of next year, the year after, and the third year in the future, and the average
earnings growth rate between years 3 to 5. The independent variables are analysts’ forecasts of one-year earnings
growth between ¢ + 7 and ¢ + 7 + 1 across horizons (E;“ [Aesirt1], for T = 0,1,2) from IGA, the self-aggregated
long-term earnings growth forecasts (LT G,) of the S&P 500 Index, and the lagged realized earnings growth (Ae;_; ;).

t-statistics calculated based on Newey-West standard errors with 18 lags are reported in parentheses.

Ae;yg Ae;in Ae;i3 Aesi 145
(1 (2) 3) 4) (5) (6) (7N 3)
Intercept -0.056  -0.059  -0.097 -0.033  -0.149  -0.072  0.004  0.014
(-4.127)  (-3.936) (-2.063) (-0.643) (-2.130) (-0.779) (0.047) (0.163)
EA [Ae1]  1.204 1.189
(20.101)  (19.936)
EA [Aessr] 1.164 0.798
(3.683)  (2.483)
EA [Aesys] 1.598 1.119
(3.342)  (1.894)
LTG, 0.486  0.541
0.717)  (0.782)
Ae; 0.075 -0.210 -0.199 -0.228
(0.992) (-1.671) (-1.683) (-3.389)
N 372 372 360 360 348 348 324 324
R?2 0.73 0.74 0.15 0.19 0.21 0.23 0.01 0.20
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Table A.4 Forecast Horizons of Popular Macroeconomic Surveys

This table summarizes the forecast horizons (in quarters) of several major surveys that cover macroeconomic variables such as GDP growth, unemployment rate and

industrial production.

Survey

Survey Start Year

Macro Variable

Survey Frequency

Maximal forecast horizon

Blue Chip Economic Indicators

Survey of Professional Forecasters
Livingston Survey
Consensus Economics

Wall Street Journal Economic Survey

Federal Reserve Summary of Economic Projections

1976
1968

1946
1989
2008

2007

Real GDP growth, Unemployment rate, Industrial production
Real GDP growth, Unemployment rate

Real GDP growth, Unemployment rate
Real GDP growth, Unemployment rate

Real GDP growth (annual and quarterly), Unemployment rate

Real GDP growth, Unemployment rate

Monthly
Quarterly

Semi-annually
Monthly

Monthly

Quarterly

~4-5 quarters
Quarterly: 4 quarters
Annual: 3 years
~4-5 quarters
6 quarters
Quarterly GDP: 6 quarters
Annual: 3 years

3 years




Table A.5 Predicting Dividend Growth Using Different Combinations of Valuation Ratios

This table reports regression results for predicting one-year S&P 500 Index dividend growth using various predictors
and sets of valuation ratios. z-statistics based on Newey-West standard errors with autocorrelation of up to 18 lags are
reported in parentheses. Data sample: 1988:01-2019:12. See Figure 4 for a detailed definition of each variable.

Adyy
) 2) (3) () (5) (6) (N (3) 9) (10) 11 (12) a3 a4 (15 (16)
dr, -0.18**  -0.04**
0.05)  (0.02)
pd; 0.29** 0.02 0.07 0.10*  7.93* 0.10*  4.24 2.26 2.15
0.11) (0.05) (0.06)  (0.06) (3.65) (0.06) (3.34) (2.86) (2.90)
gl 0.68***
(0.25)
KPCF 0.22
(0.14)
505 0.03  0.14* 0.14* 0.02 0.02  0.10* 0.01
(0.03)  (0.05) (0.05) (0.03)  (0.03) (0.04) (0.03)
s) 0.10* 0.18** 0.18** 0.16"* 0.16** 0.15**  0.15**
0.03) (0.06) (0.05) 0.06)  (0.06) 0.04)  (0.04)
s 0.07 0.10* -7.69**  0.10* -4.07 211 -2.00
(0.05)  (0.06) (3.53) (0.05) (3.23) (276) (2.80)
N 372 372 372 372 372 372 372 372 372 372 372 372 372 372 372 372
R? 0.395 0.062 0.004 0324 0.040 0.255 0270 0.383 0.271 0.384  0.231 0385 0386 0310 0.394 0.394
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Table A.6 Predicting Returns Using Different Combinations of Valuation Ratios

This table reports regression results for predicting one-year S&P 500 Index returns using various predictors and sets
of valuation ratios. #-statistics based on Newey-West standard errors with autocorrelation of up to 18 lags are reported
in parentheses. Data sample: 1988:01-2019:12. See Figure 5 for a detailed definition of each variable.

T+l

)] 2 3) ) )] (6) @] ® )] (10) (11 (12) (13) (14 (15)
dr;  -0.16"*
0.03)
pd; -0.20"* -0.13* 009  7.54 -0.09 118  -141  -1.87
0.07) 0.06) (0.07) (4.58) 0.07) (4.38) (4.03) (3.70)
uf 2.58%*
0.92)
KP, 0.90%**
0.31)
503 0.03  0.18** 0.18"* 0.03 003 0.17* 0.04
0.09)  (0.06) (0.06) 0.09) (0.09) (0.07) (0.09)
s 0.25%* 0.23** 0.23*+ 020" 0.20** 0.24**  0.21*
(0.09) (0.06) (0.06) 0.10)  (0.10) 0.06)  (0.11)
s+ -0.13*  -0.09 2753 -0.09 -128  1.29 1.74
0.06)  (0.07) (4.46)  (0.07) 425 (3.92) (3.59)
N 372 372 372 372 372 372 372 372 372 372 372 372 372 372 372
R? 0.248 0.138  0.156  0.149 0245 0230 0265 0230 0265 0183 0266 0266 0231 0266 0.268
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Table A.7 Kostakis, Magdalinos, and Stamatogiannis (2014) IVX-Wald Test

This table presents results of the IVX-Wald test proposed by Kostakis, Magdalinos, and Stamatogiannis (2014) on the
predictive coefficient 8 in Table (5). IVX-Wald is the Wald statistic to test Hy : 8 = 0 against H; : § # 0. The test is
designed to be robust to the persistence of the predictor. p-value of the IVX-Wald test is provided in the parentheses.
* *% and *** indicate significance at the 10%, 5%, and 1% levels, respectively.

dr; pd; ,uf KP;

IVX-Wald 929" 156  2.77*  5.74"
p-value  (0.002) (0.212) (0.096) (0.017)
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Table A.8 Predicting Annual Excess Return

This table presents the results of the predictive regression specified in equation (27). The dependent variable is the
log excess return of the S&P 500 index over the next twelve months, r7,,. The predictors include: the slope of the
term structure of valuation ratios dr;, the price-dividend ratio pd,, the filtered series for expected returns following
Binsbergen and Koijen (2010) uf', and the single predictive factor extracted from 100 book-to-market and size portfolios
as per Kelly and Pruitt (2013) KP;. For each predictor, the table reports the raw 8 estimate followed by the Hodrick
(1992) t-statistic, and the Newey and West (1987) ¢-statistic (with 18 lags). Starting from January 1998, we generate
out-of-sample forecasts by estimating the regression using data up to the current month. These forecasts are then used
to compute the out-of-sample R?, and the p-values of ENC test (Clark and McCracken, 2001) and CW test (Clark and
West, 2007).

t+1

(H (2 (3 4) Q)
dr; -0.146 -0.228
Hodrick t [-3.178] [-2.945]
Newey-West t (-3.867) (-3.571)
pd; -0.180 0.161
[-2.168] [1.820]
(-2.262) (1.286)
uf 2.293
[2.033]
(2.205)
KP, 0.827
[2.715]
(2.429)
N 372 372 372 372 372
R? 0.219 0.114 0.124 0.128 0.241
00S R? 0.098 -0.040 -0.096 0.005 0.138
ENC 1.924 0.296 0.021 2.175 4.539
p(ENC) <0.10 >0.10 >0.10 <0.05 <0.05
p(CW) 0.058 0.379 0.493 0.072 0.028
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Table A.9 Predicting Annual Return: Fama-French Market Return

This table presents the results of the predictive regression specified in equation (27). The dependent variable is the
log market return from Fama-French in the next twelve months, r™K7 . The predictors include: the slope of the
term structure of valuation ratios dr;, the price-dividend ratio pd;, the filtered series for expected returns following
Binsbergen and Koijen (2010) uf', and the single predictive factor extracted from 100 book-to-market and size portfolios
as per Kelly and Pruitt (2013) KP,. For each predictor, the table reports the raw S estimate followed by the Hodrick
(1992) ¢-statistic, and the Newey and West (1987) ¢-statistic (with 18 lags). Starting from January 1998, we generate
out-of-sample forecasts by estimating the regression using data up to the current month. These forecasts are then used
to compute the out-of-sample R?, and the p-values of ENC test (Clark and McCracken, 2001) and CW test (Clark and
West, 2007).

MKT
T
(H 2 (€)] 4) Q)

dr; -0.154 -0.222

Hodrick t [-3.233] [-2.772]

Newey-West t (-4.464) (-3.511)
pd; -0.198 0.133

[-2.302] [1.608]
(-2.706) (1.129)
uf 2.486
[2.327]
(2.656)
KP, 0.794
[2.223]
(2.689)

N 372 372 372 372 372
R? 0.236 0.134 0.141 0.128 0.251
00S R? 0.144 0.022 -0.023 -0.001 0.181
ENC 3.083 0.963 0.598 2.483 6.163
p(ENC) <0.05 >0.10 >0.10 <0.05 <0.01
p(CW) 0.017 0.166 0.321 0.048 0.019
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Table A.10 Predicting Annual Return: Fama-French Market Excess Return

This table presents the results of the predictive regression specified in equation (27). The dependent variable is the
log market excess return from Fama-French in the next twelve months, rt]‘flKT’e. The predictors include: the slope
of the term structure of valuation ratios dr,, the price-dividend ratio pd,, the filtered series for expected returns
following Binsbergen and Koijen (2010) uf, and the single predictive factor extracted from 100 book-to-market and
size portfolios as per Kelly and Pruitt (2013) K P;. For each predictor, the table reports the raw S estimate followed by
the Hodrick (1992) ¢-statistic, and the Newey and West (1987) ¢-statistic (with 18 lags). Starting from January 1998,
we generate out-of-sample forecasts by estimating the regression using data up to the current month. These forecasts
are then used to compute the out-of-sample R?, and the p-values of ENC test (Clark and McCracken, 2001) and CW
test (Clark and West, 2007).

() 2) 3) 4) %)
dr, -0.144 -0.222
Hodrick t [-3.060] [-2.791]
Newey-West t (-3.745) (-3.503)
pd, -0.179 0.153
[-2.108] [1.704]
(-2.199) (1.202)
uf 2.192
[2.075]
(2.057)
KP, 0.725
[2.044]
(2.251)
N 372 372 372 372 372
R? 0.206 0.108 0.109 0.105 0.225
00S R? 0.099 -0.018 -0.081 -0.037 0.140
ENC 2.000 0.376 -0.047 1.700 4.656
p(ENC) <0.10 >0.10 >0.10 <0.10 <0.05
p(CW) 0.047 0.349 0.485 0.120 0.027
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Table A.11 Monthly Return Prediction

This table presents the results of the predictive regression specified in equation (27). The dependent variable is the
log return of the S&P 500 index over the next months, 7;.1/12. The predictors include: the slope of the term structure
of valuation ratios dr,, the price-dividend ratio pd,, the filtered series for expected returns following Binsbergen
and Koijen (2010) uf", and the single predictive factor extracted from 100 book-to-market and size portfolios as per
Kelly and Pruitt (2013) KP,. For each predictor, the table reports the raw 3 estimate followed by the Hodrick (1992)
t-statistic, and the Newey and West (1987) ¢-statistic (with 7 lags). Starting from January 1998, we generate out-of-
sample forecasts by estimating the regression using data up to the current month. These forecasts are then used to
compute the out-of-sample R?, and the p-values of ENC test (Clark and McCracken, 2001) and CW test (Clark and

West, 2007).
Tt41/12
(D (2 (3 4) )]
dr; -0.012 -0.017
Hodrick t [-2.529] [-1.427]
Newey-West t (-2.826) (-2.034)
pd; -0.015 0.011
[-1.891] [0.530]
(-2.090) (0.751)
uf 0.211
[2.224]
(2.401)
KP; 0.019
[0.656]
(0.680)
N 383 383 383 383 383
R? 0.021 0.011 0.015 0.001 0.022
00S R? 0.015 0.004 0.007 -0.012 0.005
ENC 2.678 1.122 1.673 -0.676 2.384
p(ENC) <0.05 >0.10 <0.10 >0.10 <0.10
p(CW) 0.018 0.179 0.122 0.325 0.129
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Table A.12 Monthly Excess Return Prediction

This table presents the results of the predictive regression specified in equation (27). The dependent variable is the log
excess return of the S&P 500 index over the next months, r7 /12 The predictors include: the slope of the term structure
of valuation ratios dr;, the price-dividend ratio pd,, the filtered series for expected returns following Binsbergen and
Koijen (2010) uf", and the single predictive factor extracted from 100 book-to-market and size portfolios as per Kelly
and Pruitt (2013) KP;. For each predictor, the table reports the raw S estimate followed by the Hodrick (1992)
t-statistic, and the Newey and West (1987) ¢-statistic (with 7 lags). Starting from January 1998, we generate out-of-
sample forecasts by estimating the regression using data up to the current month. These forecasts are then used to
compute the out-of-sample R?, and the p-values of ENC test (Clark and McCracken, 2001) and CW test (Clark and

West, 2007).

PRI
(D 2 3 (€] )

dr; -0.011 -0.018

Hodrick t [-2.394] [-1.504]

Newey-West t (-2.684) (-2.134)
pd, -0.014 0.014

[-1.687] [0.670]
(-1.873) (0.944)
uf 0.188
[1.967]
(2.137)
KP, 0.015
[0.514]
(0.535)

N 383 383 383 383 383
R? 0.019 0.009 0.012 0.001 0.021
00S R? 0.012 0.001 0.003 -0.013 0.003
ENC 2.338 0.670 1.060 -0.766 2.233
P(ENC) <0.05 >0.10 >0.10 >0.10 <0.10
p(CW) 0.038 0.283 0.228 0.302 0.159
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Table A.13 Monthly Return Prediction: Fama-French MKT Return

This table presents the results of the predictive regression specified in equation (27). The dependent variable is the
log market return from Fama-French in the next month, r%ﬁsz The predictors include: the slope of the term structure
of valuation ratios dr,, the price-dividend ratio pd,, the filtered series for expected returns following Binsbergen
and Koijen (2010) uf", and the single predictive factor extracted from 100 book-to-market and size portfolios as per
Kelly and Pruitt (2013) KP,. For each predictor, the table reports the raw § estimate followed by the Hodrick (1992)
t-statistic, and the Newey and West (1987) ¢-statistic (with 7 lags). Starting from January 1998, we generate out-of-
sample forecasts by estimating the regression using data up to the current month. These forecasts are then used to
compute the out-of-sample R?, and the p-values of ENC test (Clark and McCracken, 2001) and CW test (Clark and
West, 2007).

it
(D (2 (3 4) Q)]

dr, -0.012 -0.017

Hodrick t [-2.354] [-1.330]

Newey-West t (-2.742) (-1.945)
pd; -0.015 0.011

[-1.819] [0.488]
(-2.044) (0.697)
uf 0.208
[2.091]
(2.306)
KP, 0.018
[0.588]
(0.626)

N 383 383 383 383 383
R? 0.019 0.011 0.014 0.001 0.021
00S R? 0.012 0.003 0.005 -0.014 0.003
ENC 2.227 0.876 1.275 -1.009 1.869
p(ENC) <0.05 >0.10 <0.10 >0.10 >0.10
p(CW) 0.034 0.220 0.171 0.220 0.176
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Table A.14 Monthly Return Prediction: Fama-French MKT excess Return

This table presents the results of the predictive regression specified in equation (27). The dependent variable is the
log excess market return from Fama-French in the next month, rf‘flllez’e. The predictors include: the slope of the
term structure of valuation ratios dr,, the price-dividend ratio pd,, the filtered series for expected returns following
Binsbergen and Koijen (2010) uf", and the single predictive factor extracted from 100 book-to-market and size portfolios
as per Kelly and Pruitt (2013) KP;. For each predictor, the table reports the raw 8 estimate followed by the Hodrick
(1992) t-statistic, and the Newey and West (1987) ¢-statistic (with 7 lags). Starting from January 1998, we generate
out-of-sample forecasts by estimating the regression using data up to the current month. These forecasts are then used
to compute the out-of-sample R?, and the p-values of ENC test (Clark and McCracken, 2001) and CW test (Clark and
West, 2007).

MKT,e
T2
(H 2 3) 4 (%)
dr; -0.011 -0.018
Hodrick t [-2.228] [-1.402]
Newey-West t (-2.602) (-2.042)
pd, -0.014 0.013
[-1.621] [0.623]
(-1.830) (0.885)
uf 0.185
[1.844]
(2.049)
KP, 0.014
[0.453]
(0.484)
N 383 383 383 383 383
R? 0.017 0.009 0.011 0.001 0.019
0O0S R? 0.010 0.000 0.001 -0.014 0.001
ENC 1.903 0.443 0.699 -1.082 1.718
p(ENC) <0.10 >0.10 >0.10 >0.10 >0.10
p(CW) 0.065 0.340 0.297 0.205 0.209
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Table A.15 Return Spanning Test: dr

The table presents the results of the following return spanning test:
Tipl = @+ Bdry + yXx; + €41

The dependent variable is the log return of the S&P 500 Index over the next twelve months, ;.. x; denotes an alternative return predictor. Detailed definitions and
the sample period for each variable can be found in Figure 7. t-statistics, based on Newey-West standard errors with autocorrelation adjustments up to 18 lags, are
provided in parentheses. Constant terms are omitted for brevity.

T+l

pd KP uf bm dy tbl Ity ntis infl Itr svar
ey @ 3 “ &) (6) (M ®) €)) (10) (1)

dr,  -0.228"*  _0.130"* -0.223"* -0.185"* -0.228"* -0.159** -0.169"* -0.151"* -0.160** -0.156** -0.160***
0.065)  (0.035)  (0.076)  (0.049)  (0.064)  (0.035)  (0.037)  (0.032)  (0.035)  (0.035  (0.035)
X 0.141 0.307 -1.571 0207  -0.140  -0387  -0.903 1.524  -7.034™ 0202  2.885"
(0.117)  (0.247)  (1.709)  (0.357)  (0.114)  (0.616)  (0.730)  (1.356)  (3.351)  (0.166)  (1.463)

X

N 372 372 372 372 372 372 372 372 372 372 372
R? 0.264 0.259 0.259 0.253 0.263 0.251 0.259 0.289 0.269 0.249 0.254

X = csp ep de dfy dfr tms cay ik SII SVIX dpCerr
ey @) 3) “ ®) (6) (M ®) €)) (10) (1)

dry <0149 0159 -0.157"** -0.156"* -0.155"* -0.160"* -0.169* -0.178** -0.150"* -0.221*** -0.209***
0.033)  (0.040)  (0.035)  (0.035)  (0.034)  (0.036)  (0.047)  (0.050)  (0.038)  (0.045)  (0.072)

x,  37.581* 0192  -0.007  -0.282 0.421 0578 -0.351 2796 0062  1373* 0011
(21.626)  (1.316)  (0.046)  (4.930)  (0.545)  (1.352)  (1.034)  (10.797)  (0.023)  (0.644)  (0.090)

N 180 372 372 372 372 372 124 124 324 193 210
R? 0.380 0.248 0.248 0.248 0.249 0.250 0.248 0.248 0.408 0.293 0.304
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Table A.16 Return Spanning Test: dr and pd

The table presents the results of the following return spanning test:

Teel = @ + B1dr; + Bopd; + yX; + €41

The dependent variable is the log return of the S&P 500 Index over the next twelve months, r;,. x; denotes an alternative return predictor. Detailed definitions and
the sample period for each variable can be found in Figure 7. ¢-statistics, based on Newey-West standard errors with autocorrelation adjustments up to 18 lags, are
provided in parentheses. Constant terms are omitted for brevity.

Te+l

KP

F

bm

tbl

ntis

u dy Ity infl Itr svar csp
ey @) 3) “ &) (6) (N ®) €)) (10) 11

pd; 0.139 0.146 0.139 0.127 0.134 0.121 0.082 0.146 0.148 0.204 0.127

(0.113) (0.273) (0.130) (0.195) (0.127) (0.130) (0.130) (0.114) (0.119) (0.125) (0.146)
dr, -0.202"* -0.227** -0.228"* -0.228"* -0.226"* -0.228"* -0.194"* -0.235"* -0.231** -0.267"* -0.211**

(0.063) (0.074) (0.068) (0.064) (0.068) (0.067) (0.058) (0.067) (0.066) (0.076) (0.056)
Xt 0.299 0.072 -0.013 -0.015 -0.241 -0.699 1.355 -7.215* 0.289* 5377 31.269

(0.261) (3.804) (0.428) (0.159) (0.639) (0.824) (1.368) (3.737) (0.175) (1.831)  (21.220)
N 372 372 372 372 372 372 372 372 372 372 180
R? 0.275 0.264 0.264 0.264 0.266 0.271 0.294 0.286 0.267 0.284 0.393
X = ep de dfy dfr tms cay ik SIT SVIX dpCerr

ey @) 3) “ &) (6) (M ®) €)) (10)

pd, 0.144 0.182 0.169 0.140 0.143 0.188 0.187 0.097 0.175 0.031

0.117) (0.151) (0.110) (0.116) (0.118) (0.131) (0.129) (0.139) (0.266) (0.154)
dr, -0.235"* -0.243*** -0.240"* -0.227** -0.233** -0.270*** -0.272** -0.199™*  -0.286"  -0.215"

(0.073) (0.076) (0.063) (0.064) (0.066) (0.076) (0.074) (0.066) (0.112) (0.084)
X -0.343 0.029 2412 0.358 -0.631 -0.261 1.191 -0.060*** 2.042 0.023

(1.492) (0.060) (5.439) (0.489) (1.283) (0.964) (9.805) (0.021) (1.436) (0.084)
N 372 372 372 372 372 124 124 324 193 210
R? 0.265 0.268 0.267 0.266 0.267 0.271 0.271 0.416 0.307 0.305
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Figure A.2 In-Sample and Out-of-Sample R> Wedge between dr and Other Return Predictors: Excess
Return

This figure compares annual return predictive R? between dr; and other commonly studied predictors. The forecast
target is the annual log excess return of the S&P 500 Index. Panels A and B report, respectively, the differences in
in-sample (IS) and out-of-sample (OOS) R? between dr and an alternative predictor. A positive value signifies that dr
has a stronger predictive power than the alternative within the same sample period. Most predictors are from Goyal
and Welch (2007) and include the price-dividend ratio (pd), the default yield spread (dfy), the inflation rate (infl), stock
variance (svar), the cross-section premium (csp, available in 1988-2002), the dividend payout ratio (de), the long-term
yield (Ity), the term spread (tms), the T-bill rate (tbl), the default return spread (dfr), the dividend yield (dy), the long-
term rate of return (ltr), the earnings-to-price ratio (ep), the book to market ratio (bm), the investment-to-capital ratio
(ik), the net equity expansion ratio (ntis), the percent equity issuing ratio (eqis), and the consumption-wealth-income
ratio (cay). KP is the predictive factor extracted from 100 book-to-market and size portfolios from Kelly and Pruitt
(2013). dp€°'" is the dividend-price ratio corrected for option-implied dividend growth in Golez (2014) (available in
1994-2011). u* is the filtered series for expected returns following Binsbergen and Koijen (2010). SII is the short
interests index from Rapach, Ringgenberg, and Zhou (2016) (available in 1988-2014). SVIX is an option-implied
lower bound of annual equity premium in Martin (2017) (available in 1996-2012).
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Figure A.3 In-Sample and Out-of-Sample R?> Wedge between dr and Other Return Predictors: Fama-
French Market Return

This figure compares annual return predictive R? between dr; and other commonly studied predictors. The forecast
target is the annual log market return from Fama-French. Panels A and B report, respectively, the differences in
in-sample (IS) and out-of-sample (OOS) R? between dr and an alternative predictor. A positive value signifies that dr
has a stronger predictive power than the alternative within the same sample period. Most predictors are from Goyal
and Welch (2007) and include the price-dividend ratio (pd), the default yield spread (dfy), the inflation rate (infl), stock
variance (svar), the cross-section premium (csp, available in 1988-2002), the dividend payout ratio (de), the long-term
yield (Ity), the term spread (tms), the T-bill rate (tbl), the default return spread (dfr), the dividend yield (dy), the long-
term rate of return (ltr), the earnings-to-price ratio (ep), the book to market ratio (bm), the investment-to-capital ratio
(ik), the net equity expansion ratio (ntis), the percent equity issuing ratio (eqis), and the consumption-wealth-income
ratio (cay). KP is the predictive factor extracted from 100 book-to-market and size portfolios from Kelly and Pruitt
(2013). dp€°'" is the dividend-price ratio corrected for option-implied dividend growth in Golez (2014) (available in
1994-2011). u* is the filtered series for expected returns following Binsbergen and Koijen (2010). SII is the short
interests index from Rapach, Ringgenberg, and Zhou (2016) (available in 1988-2014). SVIX is an option-implied
lower bound of annual equity premium in Martin (2017) (available in 1996-2012).
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Figure A.4 In-Sample and Out-of-Sample R?> Wedge between dr and Other Return Predictors: Fama-
French Market Excess Return

This figure compares annual return predictive R? between dr; and other commonly studied predictors. The forecast
target is the annual log market excess return from Fama-French. Panels A and B report, respectively, the differences
in in-sample (IS) and out-of-sample (OOS) R? between dr and an alternative predictor. A positive value signifies that
dr has a stronger predictive power than the alternative within the same sample period. Most predictors are from Goyal
and Welch (2007) and include the price-dividend ratio (pd), the default yield spread (dfy), the inflation rate (infl), stock
variance (svar), the cross-section premium (csp, available in 1988-2002), the dividend payout ratio (de), the long-term
yield (Ity), the term spread (tms), the T-bill rate (tbl), the default return spread (dfr), the dividend yield (dy), the long-
term rate of return (ltr), the earnings-to-price ratio (ep), the book to market ratio (bm), the investment-to-capital ratio
(ik), the net equity expansion ratio (ntis), the percent equity issuing ratio (eqis), and the consumption-wealth-income
ratio (cay). KP is the predictive factor extracted from 100 book-to-market and size portfolios from Kelly and Pruitt
(2013). dp€°'" is the dividend-price ratio corrected for option-implied dividend growth in Golez (2014) (available in
1994-2011). u* is the filtered series for expected returns following Binsbergen and Koijen (2010). SII is the short
interests index from Rapach, Ringgenberg, and Zhou (2016) (available in 1988-2014). SVIX is an option-implied
lower bound of annual equity premium in Martin (2017) (available in 1996-2012).
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Figure A.5 Out-of-Sample R> and Model Complexity

This figure presents the out-of-sample (OOS) R? against the degree of model complexity for various values of the
ridge shrinkage parameter, using the machine learning method developed by Kelly, Malamud, and Zhou (2024). The
analysis is based on ridge regressions and forecasts the annual log return of the S&P index. The initial OOS prediction
starts in January 1998, and the OOS R? is calculated following Goyal and Welch (2007). The machine learning models
employ a 12-month training window, y = 2, a Random Fourier Features (RFF) count P ranging from 2 to 12,000, and
the shrinkage parameter ranging from 0.001 to 1000. The blue dashed line indicates the OOS R? obtained from the
standard univariate predictive regression using dr as the predictor.
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