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a b s t r a c t 

Using a structural model, we estimate the liquidity multiplier of an interbank network 

and banks’ contributions to systemic risk. To provide payment services, banks hold re- 

serves. Their equilibrium holdings can be strategic complements or substitutes. The for- 

mer arises when payment velocity and multiplier are high. The latter prevails when the 

opportunity cost of liquidity is large, incentivising banks to borrow neighbors’ reserves in- 

stead of holding their own. Consequently, the network can amplify or dampen shocks to 

individual banks. Empirically, network topology explains cross-sectional heterogeneity in 

banks’ systemic-risk contributions while changes in the equilibrium type drive time-series 

variation. 
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2 Our empirical setting is the U.K. sterling large payment system, the 

Clearing House Automated Payments System (CHAPS), which features 

real-time gross settlement (RTGS). RTGS requires reserves to settle pay- 

ments in real time without netting the inflows and outflows. Major 

economies have adopted RTGS, such as Fedwire in the U.S. and TARGET2 

in the Eurozone. When a bank’s depositors instruct payments, the bank 

has to disperse reserves to the payees’ other banks, incurring reserve out- 

flows; when a bank’s depositors receive payments from other banks’ cus- 

tomers, the bank receives reserve inflows. Banks have to hold reserves to 

buffer reserve flow imbalances. 
3 Our setup is inspired by the recent literature on bank debts as means 

of payment enjoying a money premium, i.e., a spread between the pre- 

vailing safe return and the lower deposit rate ( Bianchi and Bigio, 2014; 

Hart and Zingales, 2014; Li, 2017; Piazzesi and Schneider, 2017 ) and the 

literature on deposit market power ( Drechsler et al., 2017; Wang et al., 

2019 ). 
4 One motivation of the payment-begetting-payment mechanism is the 

input-output linkages in the production sector ( Carvalho and Tahbaz- 

Salehi, 2019 ). For example, when downstream customers pay upstream 

suppliers for their products, upstream suppliers may in turn pay their 

own suppliers along the logistic chains. 
5 Reserves may also be depleted when used to repay short-term debts 

that cannot be rolled over in crises. 
1. Introduction 

At the core of the financial infrastructure is the pay-

ment system operated by banks. The colossal volume of

payment inflows and outflows can result in intraday im-

balances of enormous magnitude. Banks hold reserves as

buffers, and to overcome individual banks’ liquidity shocks,

they may borrow reserves from and lend reserves to

each other through the interbank network. The aggregate

amount of liquidity is crucial in supporting the functioning

of the payment system. In this paper, we study the role

of the interbank network in transmitting individual banks’

liquidity shocks and its implications for the efficiency of

aggregate liquidity provision in the payment system. 

An interbank network amplifies shocks when banks’ de-

cisions to hold reserves are strategic complements. In this

case, a shock that depletes one bank’s reserves negatively

affects other banks, resulting in a large reduction in the

aggregate liquidity. When banks’ reserve holding decisions

are strategic substitutes, the interbank network dampens

shocks, so the decline of one bank’s reserves triggers the

accumulation of reserves at neighboring banks, stabiliz-

ing aggregate liquidity. We build a model where the type

of strategic interaction on the interbank network depends

on the payment system velocity, bank customers’ demand

for payment services, and the (opportunity) costs of hold-

ing reserves. We identify the network effects via structural

estimation using data from the U.K. payment system be-

tween January 2006 and September 2010. 

We find that the network multiplier is procyclical. Be-

fore the financial crisis, the interbank network amplified

shocks. A £1 shock equally spread across banks would re-

sult in a £5.37 shock to the aggregate liquidity. It declined

to £1.43 during the crisis. After the introduction of quanti-

tative easing (QE) in the U.K., the network became a buffer,

generating a shock of £0.85 to the aggregate liquidity. Such

a shift from strategic complementarity to substitution co-

incided with a decline of payment velocity in the sample

period, as predicted by our theory. 

Our model decomposes the network-generated systemic

risk into contributions of individual banks, and thereby

identifies the key players. We find that while the net-

work topology determines banks’ relative importance in

the transmission and aggregation of shocks, the type of

equilibrium strategic interactions on the interbank network

(i.e., strategic complementarity or substitution) determines

whether banks serve as shock amplifiers or absorbers. We

also characterize the wedge between decentralized equilib-

rium and social optimum. The cyclicality of network exter-

nality suggests the need for macroprudential regulation of

banks’ liquidity choices. 

Next we summarize our model, the estimation strat-

egy, and the main findings. In our theoretical model, banks

choose the size of reserve holdings based on a cost-benefit

analysis. Two opposing forces drive the strategic interac-

tions among banks on the network. First, holding reserves

incurs the opportunity costs of forgoing other investments.

When the opportunity cost of liquidity increases, banks

hold less reserves and rely on neighbors’ liquidity via inter-

bank borrowings. The strength of such strategic substitution

is captured by the parameter ψ . 
832 
The second force at play is about the benefits of holding 

reserves, and it leads to strategic complementarity. Banks 

use reserves to provide payment services to depositors, 

e.g., to cover payment flow imbalances. 2 In reality, banks’ 

revenues from payment services take the form of reduc- 

tions of deposit rates (money premium), depending on two 

parameters. 3 The first one is the velocity of the payment 

system, i.e., the volume of payments that can be supported 

by one unit of reserves. The second parameter, which we 

call the “payment multiplier,” captures the fact that pay- 

ments beget payments – when depositors make more pay- 

ments, they trigger more economic activities and the new 

activities require more payments. 4 

The payment velocity and payment multiplier generate 

strategic complementarity in banks’ reserve holdings. When 

neighbors hold more liquidity, a bank can borrow to sup- 

port more payments, especially so when the payment ve- 

locity is high. More payments in turn trigger more eco- 

nomic activities and payment needs, especially so when 

the payment multiplier is high. The stronger needs for pay- 

ment services imply a higher marginal revenue from using 

the bank’s own reserves to support payments. Therefore, 

being able to borrow from neighbors incentivizes a bank 

to hold more reserves if the payment velocity and/or the 

payment multiplier are high. Once we solve the model, we 

obtain a single parameter ( δ) that summarizes the impacts 

of both payment multiplier and payment velocity. 

We show that at the (unique interior) Nash equilibrium, 

the overall impact of the interbank network on banks’ re- 

serves depends on a key parameter, the network attenua- 

tion factor, φ. This single parameter captures the net ef- 

fect of the two opposing economic forces. It is negative 

if strategic substitution dominates ( δ < ψ), and positive if 

strategic complementarity dominates ( δ > ψ). 

In our model, each bank receives shocks to the marginal 

cost of holding reserves. A crisis shock increases the cost 

and depletes banks’ reserves, as it becomes more diffi- 

cult to raise funds. 5 The depletion of reserves compromises 

banks’ ability to support payments and posits a significant 

threat to the financial infrastructure of the economy. Our 
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framework allows us to examine how the interbank net-

work propagates such shocks. 

The network shock propagation mechanism depends

crucially on its attenuation factor φ. In equilibrium, a

bank’s reserves depend upon its own shocks, the shocks

of its neighbors, of the neighbors of its neighbors, etc.,

with distant shocks becoming increasingly less important

as they are weighted by φk where k measures the dis-

tance. While the network topology determines the routes

of shock propagation, whether shocks are amplified ( φ >

0 ) or dampened ( φ < 0 ) depends on the type of strategic

interaction on the interbank network. The parameter φ and

the size of shocks to individual banks are the key structural

parameters in our empirical analysis. 

Our estimation uses data from the sterling large pay-

ment system (CHAPS) in the period from 2006 to 2010.

Member banks of this network conduct transactions for

their own purposes and on behalf of their clients and hun-

dreds of other nonmember banks. Their reserve holdings

ensure the functioning of the payment system, which is

crucial for supporting real economic activities. For exam-

ple, in March 2020, CHAPS processed 4.1 million payments

daily worth £8.7 trillion (almost four times the 2019 GDP

of the U.K.). CHAPS banks regularly face intraday payment

imbalances in excess of £1 billion, and use reserves to

cover such exposures. 6 

In our model, the strength of interbank connections de-

termines the amount of accessible credit. Therefore, we

measure interbank connections using overnight borrowing

and lending data. Specifically, a link between two banks is

quantified by the fraction of borrowing by one bank from

another in the recent past, so the network is directional

and its adjacency matrix is weighted (and right stochas-

tic). These interbank links can be interpreted as (frequen-

tist) probabilities of receiving credit. 

In the estimation, we utilize the fact that the equilib-

rium conditions of our model map exactly to a spatial er-

ror model (SEM), which allows us to incorporate the en-

tire network structure, banks’ characteristics, and macroe-

conomic variables into the joint likelihood of banks’ re-

serve holdings. 7 The structural parameters are estimated

via quasi-maximum likelihood. Specifically, the key param-

eter φ and the sizes of individual banks’ shocks are iden-

tified from the covariance of spatial errors. Our approach

stands in contrast with the regression models that project

variables of interest onto particular network statistics. The

structural estimation allows us to identify the type of
6 The U.K. monetary framework leaves reserves management largely at 

individual banks’ discretion (both before and after quantitative easing). 

In the Online Appendix, we provide background information on the pol- 

icy framework (reserve regimes), including details on the payment system 

and the interbank markets. 
7 SEM is a conservative approach, leaving only the residual variation in 

reserve holdings (orthogonal to bank characteristics and macroeconomic 

variables) to be driven by the network. We also estimate a spatial Durbin 

model (SDM), where the network plays a larger role since banks’ reserves 

in this case depend not only on shocks to other banks but also on other 

banks’ characteristics (e.g., balance sheet conditions). Since SEM and SDM 

are nested models, the SDM estimation also provides a specification test 

for our framework. 

833 
strategic interaction on the network, to characterize shock 

propagation, and to conduct counterfactual analysis. 

We conduct four empirical exercises. First, we show 

that φ is procyclical. In the period before the global finan- 

cial crisis, the network equilibrium exhibits strategic com- 

plementarity. With a positive and large value of φ, the in- 

terbank network strongly amplifies shocks. To quantify the 

network effect, we compute the ratio of aggregate liquidity 

volatility to counterfactual volatility when there is no net- 

work externality (i.e., the attenuation factor φ is zero) and 

obtain 5.59. As the crisis unfolded, strategic complemen- 

tarity weakens and strategic substitution strengthens, re- 

sulting in a smaller volatility ratio of 1.25. After the intro- 

duction of quantitative easing in early 2009, the network 

equilibrium demonstrates the effect of strategic substitu- 

tion. The interbank network becomes a shock buffer that 

stabilizes the aggregate liquidity provision in the payment 

system, and the volatility ratio falls to 0.89 (i.e., an 11% re- 

duction of aggregate reserve volatility due to network con- 

nections). 

In our theoretical model, strategic complementarity be- 

comes stronger when the payment system velocity is 

higher. To further investigate the dynamics of network ef- 

fects, we calculate the velocity in the data, i.e., the ratio of 

payment volume to reserves in the system. We find that it 

has an 89% correlation with our rolling estimate of φ. This 

finding lends support to our model and reveals an impor- 

tant driver of the type of strategic interaction on the net- 

work. 

Second, we empirically characterize the shock propa- 

gation mechanism and quantify individual banks’ contri- 

butions to aggregate liquidity risk in the payment sys- 

tem. Using the model’s equilibrium conditions, we define 

and estimate banks’ network impulse response functions 

(NIRFs) that naturally decompose the volatility of aggregate 

reserves into each bank’s risk contribution. We find that 

in any given period, two or three banks are the risk key 

players (with relatively large NIRFs), and each bank’s risk 

contribution varies substantially over time. Moreover, the 

risk key player is typically not the largest net borrower –

even net lenders can generate substantial risk in the sys- 

tem. These findings are relevant for monitoring and regu- 

lating the banking system, as well as policy interventions 

during crisis. 

Third, we conduct two counterfactual analyses. The first 

one focuses on the role of network topology in generat- 

ing the cross-sectional variation in banks’ contributions to 

systemic risk. We consider a hypothetical network where 

all banks are connected to each other and the strength 

of connection is the same for each pair. We find that, 

on such a network, banks’ risk contributions are largely 

the same. Therefore, the cross-sectional difference between 

banks’ risk contributions depends crucially on the hetero- 

geneity of network connections. Our second counterfactual 

exercise examines the time variation of banks’ NIRFs. We 

decompose the variations into the changes due to varia- 

tion in φ (the type of strategic interaction on the network) 

and the changes due to variation of network topology. We 

find that the former is clearly the main driver. Therefore, 

while network topology drives the cross-sectional variation 

in banks’ contributions to systemic risk, it is the type of 
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equilibrium strategic interaction (i.e., complementarity or

substitution) that drives the time-series variation. 8 

Finally, we compare the decentralized equilibrium with

the planner’s optimum using our model and estimates

of the structural parameters. The discrepancies across the

boom and crisis periods offer guidance on potential policy

interventions. For example, we find that during the boom

period the amount of aggregate liquidity held by banks is

not too far from the planner’s optimum, but the network

generates too much volatility through the systemic prop-

agation of shock through the network. During the crisis

period, the decentralized equilibrium generates an amount

of reserve buffer in the payment system that is below the

planner’s optimum, and the systemic risk is still too high.

After the introduction of quantitative easing, the systemic

risk generated by the network subdued. 

The remainder of this paper is organized as follows. In

Section 2 , we review the related literature. In Section 3 ,

we present and solve the network game. Section 4 casts

the model equilibrium into the spatial econometric frame-

work, outlines the estimation methodology and identifica-

tion conditions, and defines risk key players. In Section 5 ,

we describe and summarize the data. In Section 6 , we

present and discuss the estimation results. Section 7 con-

cludes. In the Appendix, we explain the U.K. mone-

tary policy framework, discuss details of the data con-

struction and estimation method, and provide additional

results. 

2. Related literature 

This paper contributes to the literature on bank liq-

uidity management. Banks in payment systems are at the

most fundamental layer of economic transactions. Every

transaction ultimately goes through these payment system

members. Member banks’ decisions have profound influ-

ence on the whole economy ( Piazzesi and Schneider, 2017 ).

We provide the first evidence on how the liquidity choices

of payment system banks depend on the interbank net-

work. Our findings can be embedded in the broad dis-

cussion of banks’ portfolio choices over an economic cy-

cle (e.g. Cornett et al., 2011 ). Importantly, our finding that

the equilibrium type on the network flips with the start

of QE contributes to the literature on bank liquidity man-

agement and monetary policy (e.g., Bernanke and Blinder,

1988; Kashyap and Stein, 20 0 0; Bianchi and Bigio, 2014;

Drechsler et al., 2014 ). 

We contribute to the literature on bank liquidity reg-

ulation by providing an empirical framework to attribute

systemic risk to individual banks and by characterizing the

wedge between decentralized outcome and the planner’s

solution. Liquidity regulation has attracted considerable at-

tention since the financial crisis. Stein (2012) argues that

reserve requirements may serve as a tool for financial sta-

bility regulation. Diamond and Kashyap (2016) study bank

liquidity regulation in the setting of Diamond and Dyb-

vig (1983) . Allen and Gale (2017) review earlier theories
8 A corollary of our finding is that in our setting, the endogenous for- 

mation and evolution of the network over time plays a limited role in 

determining the time-variation in the network effects. 

834 
that may provide foundations (i.e., sources of market fail- 

ures) for bank liquidity regulations, such as liquidity cover- 

age ratio and net stable funding ratio in Basel III. Our find- 

ings of procyclical network externality, and banks’ time- 

varying contributions to systemic risk, lend support to a 

macroprudential perspective on liquidity regulation. 

Our work also advances the literature on interbank 

market, payment system, and banks’ liquidity demand. In 

our model, banks hold liquidity to support depositors’ pay- 

ments ( Bech and Garratt, 2003 ). Ashcraft et al. (2010) find 

that banks hold excess reserves in response to height- 

ened payment uncertainty. Relatedly, Acharya and Mer- 

rouche (2010) document evidence of precautionary liq- 

uidity demands of U.K. banks during the subprime crisis. 

Banks’ profits from offering payment services often take 

the form of deposit rate reductions in reality, which in turn 

depend on banks’ deposit market power (e.g., Drechsler 

et al., 2017; Wang et al., 2019 ). Depositors’ demand for 

payment services increases in the level of local eco- 

nomic activities in our model. Such positive spillover ef- 

fects are motivated by input-output linkages ( Carvalho and 

Tahbaz-Salehi, 2019 ) and agents’ liquidity risk management 

( Shin, 2019 ), and echo the spillover effects in the models of 

economic growth (e.g., Frankel, 1962; Lucas, 1988; Romer, 

1986 ). Finally, we also incorporate banks’ free-riding incen- 

tives in liquidity choices, motivated by the pioneer work of 

Bhattacharya and Gale (1987) on interbank markets. 

Recent theoretical works on interbank markets high- 

light the various forms of externalities and inefficien- 

cies (e.g., Freixas et al., 20 0 0; Allen et al., 20 08; Freixas 

et al., 2011; Moore, 2012; Castiglionesi et al., 2017 ). 

Fecht et al. (2010) find that the prices of liquidity de- 

pend on counterparties’ liquidity levels. Our paper differs 

by modeling banks’ liquidity holdings as an outcome of a 

network game and estimating time-varying network exter- 

nality. We are not the first to emphasize that shock prop- 

agation depends on complementarity versus substitution 

(e.g., Jovanovic, 1987 ). However, to the best of our knowl- 

edge, we are the first to estimate such interdependence of 

players using a network structure and to provide evidence 

of time-varying network externalities. 

Networks have proven to be a useful analytical tool 

for studying financial contagion and systemic risk from 

both theoretical and empirical perspectives. Starting from 

Allen and Gale (20 0 0) , recent theories feature increasingly 

sophisticated networks and shock transmission mecha- 

nisms. See Babus and Allen (2009) for a comprehen- 

sive review. Recent works include, but are not lim- 

ited to, Afonso and Shin (2011) , Zawadowski (2012) , 

Acemoglu et al. (2012) , ( Herskovic, Kelly, Lustig, Nieuwer- 

burgh, 2017 ), and Eisfeldt et al. (2020) . Recent empirical 

works also cover a wide range of economic networks (see 

Diebold and Yılmaz, 2009; Diebold and Yılmaz, 2014; Bil- 

lio et al., 2012; Kelly et al., 2013; Duarte and Eisenbach, 

2013; Greenwood et al., 2015 , and Gofman, 2017 ). We dif- 

fer from these papers by using the linear-quadratic ap- 

proach of Ballester et al. (2006) to analyze how economic 

agents’ liquidity holding decisions in a network game gen- 

erate systemic risk and by structurally estimating network 

externalities. Herskovic et al. (2017) embed a similar spa- 
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9 Egan et al. (2017) document that the profit from deposit-taking is a 

key determinant of bank value because the payment service allows banks 

to borrow at low deposit rates. 
10 Our empirical setting, the Clearing House Automated Payment Sys- 

tem (CHAPS) transaction system in the U.K., features settlement in real 

time and on gross terms to eliminate counterparty credit risks. For more 

details, please refer to the Online Appendix. 
11 Our estimation results are robust to alternative measurements of in- 

terbank relationships, such as bank i ’s lending to j and the gross amount 

of interbank borrowing and lending. 
tial autoregressive structure in firms’ growth rates to study

the comovement of firm volatilities. 

Our result that the interbank network contributes sig-

nificantly to systemic risk might explain the puzzling find-

ing in the literature where interbank networks, when cal-

ibrated to the data, have only limited impact on sys-

temic risk. For example, simulation studies based on rea-

sonably realistic networks show little impact of linkage

variation (summarized in Upper, 2011 ). Using a unique

dataset of all Austrian banks, Elsinger et al. (2006) find

that contagion happens rarely and that the funds required

to prevent contagion are surprisingly small. By applying an

Eisenberg and Noe (2001) style model to German banks,

Chen et al. (2016) find that the lack of bank capital, rather

than the network contagion, is the key contributor to bank

failure. We find that instead of variation of the network

topology, the change in the type of equilibrium on the net-

work is the main driver of systemic risk. Therefore, it is

important to model and estimate time-varying network ex-

ternalities in order to understand the role of a network in

systemic risk formation. Finally, studies on broker-dealer

networks often show that trading volume concentrates on

a few players ( Afonso and Lagos, 2015; Hugonnier et al.,

2014; Chang and Zhang, 2019; Farboodi, 2019 ). Instead of

volume distribution, this paper studies risk distribution

and finds a similar core-periphery structure – two or three

banks contribute most to the systemic liquidity risk. 

3. The network model 

In this section, we construct a model of banks’ liquidity

holding decisions that directly guides our empirical anal-

ysis of systemic risk in the interbank network. In this set-

ting, given the network structure, a set of banks simultane-

ously choose the level of liquidity holdings needed to sup-

port their payment services. In equilibrium, we show that

each i bank’s optimal liquidity holding, z i,t , not only de-

pends on its own characteristics, but also responds to all

other banks’ liquidity holding decisions through the net-

work as follows: 

z ∗i,t = φ
∑ 

j � = i 
g i j,t z j,t + μi,t , (1)

where the subscript t is the time index. Our goal is to em-

pirically estimate this equation. This equilibrium condition,

as discussed later in this section, is robust in that it could

be in principle derived using microfoundations other than

the ones that we postulate. To guide the interpretation of

the empirical results, we model the strategic interactions

of banks in a payment system, detailing the role of this

economic channel while recognising that other forces may

also be at play. 

Payment services. Consider the tth period in a dynamic

economy where there are N banks. At the beginning of pe-

riod t , banks decide how much reserves to hold. Banks

hold reserves for two reasons: for their own internal liq-

uidity needs independent from the network (denoted by
835 
q i,t ), and to support customers’ payment activities ( z i,t ). 
9 

The first component, q i,t , is determined by banks’ charac- 

teristics ( x m 

i,t 
) and macroeconomic conditions ( x 

p 
t ): 

q i,t = αi + 

M ∑ 

m =1 

βm 

x m 

i,t + 

P ∑ 

p=1 

βp x 
p 
t , (2) 

where αi is a bank fixed effect. The second component, and 

main focus of our analysis, z i,t , is the choice of reserves 

that support payment activities of the customers (deposi- 

tors). 

Bank i allocates an amount of reserves z i,t at the begin- 

ning of period t to the payment system. Reserves buffer the 

intraday payment outflows. When a depositor makes pay- 

ments, her bank often experiences reserve outflows, be- 

cause the payees may hold accounts at different banks and, 

thus, settlement requires her bank to send reserves to the 

payees’ banks while debiting her deposit account. 10 If the 

depositor pays cash to her payee, she has to withdraw de- 

posits, which also reduces her bank’s reserves. 

During the period, a bank’s reserves are also made 

available to other banks via interbank loans, so when one 

bank exhausts its own reserves, it may borrow from other 

banks to cover the payment outflows. Therefore, a bank’s 

ability to provide payment services depends on the total 

accessible liquidity that consists of its own reserves, z i,t , 

and interbank borrowing. 

Specifically, bank i may expect to borrow up to 

η
∑ 

j � = i g i j,t z j,t , which is a weighted average of other banks’ 

reserves multiplied by η, a scaling parameter. The strength 

of interbank connection is measured by g i j,t ( ∈ ( 0 , 1 ) ) with ∑ 

j � = i g i j,t = 1 . The parameter η captures the overall acces- 

sibility of interbank credit and the network linkages, g i j,t , 

capture the cross-sectional heterogeneity. Therefore, the 

total accessible liquidity at the beginning of the period is 

z i,t + η
∑ 

j � = i g i j,t z j,t , depending on the interbank linkages 

and neighboring banks’ reserves committed to the pay- 

ment system. 

The time- t network is predetermined and character- 

ized by an N-square adjacency matrix G t . If its element 

g i j,t � = 0 , bank i and j are connected. Later, to construct 

G t in the structural estimation we use interbank borrow- 

ing and lending data, which is likely to be most relevant 

for the daily variation of bank reserves that we focus on. 

Specifically, g i j,t will be measured by the historical fraction 

of borrowing by bank i from bank j in the month up to 

day t . 11 The network is therefore directed, and G t is right 

stochastic. 

The amount of accessible liquidity, z i,t + η
∑ 

j � = i g i j,t z j,t , 

is an ex ante measure of available liquidity. It is deter- 

mined after banks simultaneously choose z i,t at the be- 
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12 The microfoundation for these two forces is given in detail in the On- 

line Appendix. 
ginning of period t . As the period unfolds and payments

take place, the actually used liquidity fluctuates, depend-

ing on the outflows from customers sending out payments

and the inflows from customers receiving payments (e.g.,

Bech and Garratt, 2003 ). Here we do not explicitly model

the intra-period payment flows and the interbank borrow-

ing and lending ex post , but recognize that when the total

accessible liquidity is larger, banks would allow depositors

to conduct more payments throughout the period. Let S i,t 
denote bank i ’s supply of payment services. It increases in

the total accessible liquidity at the beginning of period: 

S i,t = κb 

( 

z i,t + η
∑ 

j � = i 
g i j,t z j,t 

) 

, (3)

where κb > 0 (the subscript “b” for “bank”). In reality,

banks introduce various restrictions on customers’ pay-

ment activities in order to limit the intraday liquidity

used, such as restricting number of transfers from savings

to checking accounts and limiting the value of electronic

transfers that can be settled intraday. The parameter κb is

the ratio of total payment volume to total accessible liquid-

ity, a measure of liquidity velocity in the payment system.

Given the velocity, holding more liquidity allows a bank to

support more payments. 

Bank optimization. Let V 
(
S i,t 
)

denote bank i ’s revenues

from providing payment services. In Appendix A.1 , we pro-

vide a microfoundation of the function V ( ·) based on de-

positors’ demand for payment services. Bank i ’s objective

is 

max 
z i,t 

u i (z i,t , 
{

z j,t 
}

j � = i | G t ) = V ( S i,t ) −
[ 

γ

( 

z i,t + η
∑ 

j � = i 
g i j,t z j,t 

) 

+ 

ψ 

2 

( 

z i,t + η
∑ 

j � = i 
g i j,t z j,t 

) 2 

+ ̃

 μi,t γ
′ z i,t + 

ψ 

′ 
2 

z 2 i,t 

⎤ ⎦ (4)

where S i,t is given in Eq. (3) and 

˜ μi,t is a random vari-

able that is independent across banks and realized before

banks decide on z i,t . The objective function captures the

costs of setting aside liquidity to support depositors’ pay-

ment, which depend on the forgone investment opportu-

nities and other usages of liquidity. The first two terms in

the liquidity cost form a quadratic cost function, and the

last two terms capture the fact that bank i ’s own reserves

may cost differently from interbank borrowings. 

We solve a Nash equilibrium where N banks simultane-

ously choose z, the reserves in the payment system. Specif-

ically, bank i chooses the best response, z i,t , to other banks’

decisions, 
{

z j,t 
}

j � = i . In the spirit of classic linear-quadratic

games, we consider a linear marginal revenue function,

in particular, V ′ 
(
S i,t 
)

= δS i,t , so the first-order condition

(F.O.C.) for z i,t yields 

δ

( 

z ∗i,t + η
∑ 

j � = i 
g i j,t z j,t 

) 

= γ + ψ 

( 

z ∗i,t + η
∑ 

j � = i 
g i j,t z j,t 

) 

+ 

˜ μi,t γ
′ + ψ 

′ z ∗i,t , (5)
836 
The parameter δ is decomposed into two economic 

forces and defined by 12 

δ ≡ δS κb . (6) 

As previously discussed, the parameter κb is the payment 

velocity – the volume of payments that one unit of re- 

serves supports. When κb is large, one unit of liquidity 

can support more payments (i.e., a higher S i,t ) as shown 

in Eq. (3) . The parameter δS determines how the increase 

of S i,t translates into more revenues. In Appendix A.1 we 

show that δS depends on the payment multiplier , i.e., how 

depositors’ payments trigger economic activities and sub- 

sequent payments. 

The main tradeoffs that a bank faces are captured by 

Eq. (5) . The term on the left-hand side is the marginal rev- 

enue, which is a function of the level of the bank’s supply 

of payment services ( S i,t ). That is, as in a monopolist max- 

imization problem, each bank internalises the effect of its 

own supply on marginal revenues. The right-hand side of 

Eq. (5) features the marginal costs of internal and external 

liquidity that are affected, respectively, by ψ + ψ 

′ and ψ . 

For this problem to have a unique solution, we impose 

the parameter restriction that guarantees the concavity of 

bank’s objective function in z i,t : 

∂ 2 u i (z i,t , 
{

z j,t 
}

j � = i | G t ) 

∂z 2 
i,t 

= δ − ψ − ψ 

′ < 0 . (7) 

Equilibrium. All banks’ first-order conditions imply a 

system of linear best response functions that jointly solve 

the set of optimal 
{

z ∗
i,t 

}N 

i =1 
. Rearranging banks’ F.O.C., we 

solve 

z ∗i,t = 

(
δ − ψ 

ψ 

′ − ( δ − ψ ) 

)
η
∑ 

j � = i 
g i j,t z j,t + 

(
−˜ μi,t γ

′ − γ
)

ψ 

′ − ( δ − ψ ) 
. 

(8) 

From the condition Eq. (7) , ψ 

′ > ( δ − ψ ) . To further sim- 

plify the notation, we define 

μi,t ≡
(
−˜ μi,t γ

′ − γ
)

ψ 

′ − ( δ − ψ ) 
, (9) 

and, importantly, the parameter that captures the nature of 

network effects: 

φ ≡
(

δ − ψ 

ψ 

′ − ( δ − ψ ) 

)
η. (10) 

The solution to bank i ’s problem can thus be written as 

z ∗i,t = φ
∑ 

j � = i 
g i j,t z j,t + μi,t . (11) 

The bilateral network influences in our model are cap- 

tured by the following cross-derivatives for i � = j: 

∂ 2 u i (z i,t , 
{

z j,t 
}

j � = i | G t ) 

∂ z i,t ∂ z j,t 
= φg i j,t , 
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14 We thank one of the referees for pointing this out. 
15 This centrality measure takes into account the number of both direct 

and indirect connections in a network. For more on the Bonacich central- 

ity measure, see Bonacich (1987) and Jackson (2003) . For other economic 

applications, see Ballester et al. (2006) and Acemoglu et al. (2012) . For an 

excellent review of the literature, see Jackson and Zenou (2012) . 
where the sign of φ determines whether the Nash equi-

librium features strategic substitution ( φ < 0 ) or com-

plementarity ( φ > 0 ). Note that the parameter restriction

Eq. (7) implies that the denominator of Eq. (10) is always

positive. Hence, the sign of φ and of the above cross-

derivative depends on the sign of δ − ψ . Strategic comple-

mentarity arises when δ is large, i.e., when either the pay-

ment velocity or the payment multiplier is large. Strategic

substitution arises when ψ is high – i.e. in the presence

of high marginal costs. Moreover, note that sign (∂ φ/∂ ψ) =
−sign (ψ 

′ ) . Since internal funds are more flexible, it is nat-

ural to conjecture that they have higher opportunity cost

than external ones, hence ψ 

′ > 0 . In this case φ decreases

in ψ : that is, as the overall marginal cost increases, the bi-

lateral effect is pushed toward strategic substitution. This

is quite intuitive: when internal liquidity has relatively

higher opportunity cost, as the overall cost of holding liq-

uidity increases, banks substitute internal liquidity with

external one. 

Proposition 1 . Suppose that | φ| < 1 . Then, there is a unique

interior solution for the Nash equilibrium outcome given by 

z ∗i,t ( φ, G t ) = { M ( φ, G t ) } i. μt , (12)

where { } i. is the operator that returns the i th row of its argu-

ment, μt ≡
[
μ1 ,t , . . . , μn,t 

]� 
, and 

M ( φ, G t ) ≡ I + φG t + φ2 G 

2 
t + φ3 G 

3 
t + . . . = 

∞ ∑ 

k =0 

φk G 

k 
t 

= ( I − φG t ) 
−1 

, (13)

where I is the N × N identity matrix. 

Proof . The first-order condition identifies the individ-

ual optimal response. Applying Theorem 1(b) in Calvo-

Armengol et al. (2009) , we know the necessary equilibrium

condition is | φλmax ( G t ) | < 1 where the function λmax ( ·)
returns the largest eigenvalue. Since G t is a right stochas-

tic matrix, its largest eigenvalue is 1. Hence, the condition

requires | φ| < 1 , and if so, the infinite sum in Eq. (13) is

finite and equal to the stated result ( Debreu and Her-

stein, 1953 ). �

The condition | φ| < 1 states that network externalities

must be small enough in order to prevent the feedback

triggered by such externalities to escalate without bounds.

In vector form, z t ≡
[
z 1 ,t , . . . , z N,t 

]� 
, and in equilibrium, 

z ∗t = ( I − φG t ) 
−1 μt . (14)

Note that in the Nash equilibrium, the aggregate level of

bank reserves that support payments, 
∑ N 

i =1 z i,t , is not con-

strained by the supply of the central bank. It is fully deter-

mined by banks’ reserve choices (the demand side). This

assumption of perfectly elastic reserve supply is consistent

with the empirical context – under the U.K. monetary pol-

icy framework, the Bank of England accommodates banks’

reserve demand in order to maintain its policy rate. 13 
13 For more details on the institutional background, please refer to the 

Online Appendix. 
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Note that Eq. (11) , which leads to the equilibrium char- 

acterization in Proposition 1 , is rather robust in that it 

could in principle be derived using different microfoun- 

dations other than the payment system dynamics. For in- 

stance, Eq. (11) can arise in an environment in which in- 

terbank relationships are driven by risk sharing motives 

as in Eisfeldt et al. (2020) , or if banks have incentives to 

hold similar positions as in a beauty contest game à la 

Morris and Shin (2002) . What changes across these differ- 

ent microfoundations is the economic interpretation of the 

network attenuation factor φ. 14 As we show in the empiri- 

cal section below, the microfoundation of φ that we pro- 

pose is supported by the data – the estimated φ has a 

strong positive correlation with the payment system veloc- 

ity, which is part of δ, as postulated by our theory. 

Network propagation. The matrix M ( φ, G t ) has an im- 

portant economic interpretation: it aggregates all direct 

and indirect links among banks using an attenuation fac- 

tor, φ, that penalizes (as in Katz, 1953 ) the contribution of 

links between distant nodes at the rate φk , where k is the 

length of the path between nodes. In the infinite sum in 

Eq. (13) , the identity matrix captures the (implicit) link of 

each bank with itself, the second term in the sum captures 

all the direct links between banks, the third term in the 

sum captures all the indirect links corresponding to paths 

of length two, and so on. The elements of M (φ, G t ) , given 

by m i j (φ, G t ) ≡
∑ + ∞ 

k =0 
φk 
{

G 

k 
t 

}
i j 

, aggregate all paths from j

to i , where the k th step is weighted by φk . 

In equilibrium, the matrix M ( φ, G t ) contains informa- 

tion about the centrality of network players. 15 Multiplying 

the rows (columns) of M ( φ, G t ) by a unit vector of con- 

formable dimensions, we recover the indegree (outdegree) 

Katz–Bonacich centrality measure. 16 The indegree central- 

ity measure provides the weighted count of the number of 

ties directed to each node (i.e., inward paths), while the 

outdegree centrality measure provides the weighted count 

of ties that each node directs to the other nodes (i.e., out- 

ward paths). That is, the i th row of M ( φ, G t ) captures how 

bank i loads on the network as whole, while the i th col- 

umn of M ( φ, G t ) captures how the network as a whole 

loads on bank i . 

The matrix M ( φ, G t ) (which includes the network 

topology and the network attenuation factor φ) is not 

enough to determine the systemic importance of a bank. It 

governs the propagation of shocks. At the beginning of pe- 

riod t and before banks decide on reserve holdings, shocks 

to individual banks are realized, observed by banks and 

their neighbors, and encoded in μi,t . Specifically, we can 

decompose μi,t into a time-invariant term, μ̄i , and a shock 
16 Newman (2004) shows that weighted networks can in many cases 

be analyzed using a simple mapping from a weighted network to an un- 

weighted multigraph. Therefore, the centrality measures developed for 

unweighted networks apply also to the weighted cases. 
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specific to period t and bank i , νi,t : 

μi,t = μ̄i + νi,t , (15)

where νi,t , the ultimate source of uncertainty, is a shock

that is independent across banks and over time, with zero

mean and variance equal to σ 2 
i 

. The shock arrives at the

beginning of period t , observed by all banks before the de-

cision on reserve holdings is made. 

To see clearly how the network propagates idiosyncratic

shocks, we write Eq. (12) as 

z ∗t = M ( φ, G t ) ̄μ︸ ︷︷ ︸ 
level effect 

+ M ( φ, G t ) νt ︸ ︷︷ ︸ 
risk effect 

. (16)

Regardless of M ( φ, G t ) , i.e., how shocks are propagated,

banks with large liquidity shocks (i.e., large σ 2 
i 

) have a

large influence on other banks’ reserve holdings. 

The planner’s solution. The model captures not only

the shock amplification mechanism through the network

but also the externalities. Individual banks make their own

decisions without internalizing the impact on neighbors.

We proceed to a formal analysis of the planner’s prob-

lem in this interconnected system to highlight the wedge

between decentralized equilibrium and social optimum.

Specifically, we consider a planner that equally weights the

utility of each bank and hence chooses liquidity holdings

by solving the following problem: 

max 
{ z i,t } N i =1 

N ∑ 

i =1 

u i (z i,t , 
{

z j,t 
}

j � = i | G t ) . (17)

The planner’s first-order condition for bank i ’s liquidity

yields 

δ

( 

z i,t + η
∑ 

j � = i 
g i j,t z j,t 

) 

+ η
∑ 

j � = i 
g ji,t δ

( 

z j,t + η
∑ 

k � = j 
g jk,t z k,t 

) 

= 

[ 

γ + ψ 

( 

z i,t + η
∑ 

j � = i 
g i j,t z j,t 

) 

+ ̃

 μi,t γ
′ + ψ 

′ z i,t 

] 

(18)

+ η
∑ 

j � = i 
g ji,t 

[ 

γ + ψ 

( 

z j,t + η
∑ 

k � = j 
g jk,t z k,t 

) ] 

. 

The first term on the left-hand side and the terms in the

first square bracket on the right-hand side are the same

as those in bank i ’s first-order condition in the decentral-

ized equilibrium. The new terms reflect network external-

ities that bank i ignores in its own optimization. Specifi-

cally, the outdegree link, g ji,t , prominently captures the im-

pact of bank i ’s decision of z i,t on neighboring banks’ de-

cisions through the marginal revenue of payment services

(the second term on the left) and the marginal cost of liq-

uidity (the second term on the right). 

We can write the first-order conditions for 
{

z i,t 
}N 

i =1 
in

vector form as: (
I + ηG 

� 
t 

)
( δz t + δηG t z t ) = 

(
I + ηG 

� 
t 

)
( γ 1 + ψz t 

+ ψηG t z t ) + ̃

 μt γ
′ + ψ 

′ z t . (19)

Thus, we obtain the following planner’s solution: 

z p t = 

[
ψ 

′ I − ( δ − ψ ) 
(
I + ηG � t 

)
( I + ηG t ) 

]−1 [−˜ μt γ
′ − γ

(
I + ηG � t 

)
1 
]

838 
= 

[
I −
(

φ/η

1 + φ/η

)(
I + ηG � t 

)
( I + ηG t ) 

]−1 

×
[ (

1 

1 + φ/η

)
μt − γ η

ψ 

′ G 
� 
t 1 

] 
. (20) 

This allows us to formally state the planner’s solution, 

which will guide our empirical analysis, especially the 

comparison between the decentralized outcome and the 

planner’s solution. 

Proposition 2 . Let M 

p ( φ, η, G t ) ≡
[ 

I −
(

φ/η
1+ φ/η

)
( I + ηG � t ) ( I + ηG t ) 

] −1 
. 

Suppose that the absolute value of the maximum eigenvalue 

of M 

p ( φ,η, G t ) , | λmax ( M 

p ( φ,η, G t ) ) | , is smaller than one. 

Then, the planner’s optimal solution is uniquely defined and 

given by 

z p t = M 

p ( φ, η, G t ) 

[ (
1 

1 + φ/η

)
μt − γ η

ψ 

′ G 

� 
t 1 

] 
. (21) 

Proof . The proof follows the same argument as in the proof 

of Proposition 1 . �

4. Empirical method 

4.1. From model to data 

In our model, banks hold reserves for two purposes: 

q i,t for reasons unrelated to interbank network and pay- 

ment system, and z i,t to support the payment system. In 

the data, we only observe l i,t = q i,t + z i,t , i.e., the total re- 

serve holdings. In other words, unlike the banks in the 

network game, the econometrician cannot separately ob- 

serve q i,t and z i,t . However, we do observe bank character- 

istics ( x m 

i,t 
) and macroeconomic variables ( x 

p 
t ) that drive q i,t . 

Therefore, we can write the observed total reserve holdings 

as 

l i,t = αweek 
t + αbank 

i + 

M ∑ 

m =1 

βbank 
m 

x m 

i,t + 

P ∑ 

p=1 

βmacro 
p x p t + z i,t , 

(22) 

where i = 1 , . . . , n , t = 1 , . . . , T , and according to our model

we have that 

z i,t = μ̄i + φ
N ∑ 

j=1 

g i j,t z j,t + νi,t ∼ iid 
(
0 , σ 2 

i 

)
. (23) 

Note that we also include week fixed effects to control for 

unobserved macro factors in q i,t . Eqs. (22) and (23) to- 

gether constitute a spatial error model (SEM) (see e.g. 

Anselin, 1988; Elhorst, 2010b; Elhorst, 2010a ). Such models 

allow the joint estimation of the fixed effects and β coef- 

ficients in the observational Eq. (22) , and μ̄i , φ, and σi in 

the “error” Eq. (23) . Therefore, even though the econome- 

trician does not observe z i,t directly, the parameters of the 

network game can still be recovered. In the next subsec- 

tion, we provide more details on the identification of these 

parameters. 

We estimate the model using daily data. On day t , the 

network is predetermined; g i j,t is measured by the fraction 

of bank i ’s borrowing from bank j (average over the month 

up to t). As econometricians, we observe banks’ charac- 

teristics, i.e., { x m 

i,t 
} M 

m =1 
for bank i , and macro variables, i.e., 
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17 For an extensive discussion of estimation and identification of spatial 

models see Anselin (1988) , and chapter 8 in particular for the spatial error 

model. 
18 Ideally, if we were to observe q i,t and z i,t separately, we could esti- 

mate φ and 
{
σ 2 

i 

}N 

i =1 
only using the data on z i,t . But as econometricians 

we only observe l i,t = q i,t + z i,t and the control variables that drive q i,t , so 

we estimate φ and 
{
σ 2 
}N 

and the control variables’ coefficients jointly. 
{ x p t } P p=1 
, which help us to separate, q i,t , from the observed

total liquidity holding, l i,t , and thereby identify the impact

of the network through the residual term, z i,t . 

All control variables are lagged by one day for prede-

terminancy. The estimate of φ reveals the type of equilib-

rium on the network, i.e., strategic substitution or comple-

mentarity. To exhibit variation in φ and allow for changes

in { σi } N i =1 
, we estimate the model in both subsamples and

rolling samples. 

4.2. Identification 

The identification strategy, the likelihood function, and

the estimation algorithm are discussed in detail in the On-

line Appendix. Nevertheless, to fix intuition about how the

key network parameter, φ, is recovered from the data, it is

useful to consider a simplified version of the spatial error

model in Eqs. (22) and (23) . Let L t ∈ R 

N denote the vector

containing the liquidity holdings of the individual banks at

time t , and to simplify exposition let us disregard at first

the fixed effects in Eqs. (22) and (23) and assume that the

spatial network matrix, G , has constant weights. The spa-

tial model can then be rewritten as 

L t = X t β + z t , z t ∼ iid ( 0 N , �) , (24)

where 0 N denotes a vector of zeros, � = M �νM 

� with

M = ( I N − φG ) 
−1 

, and �ν is a diagonal matrix with ele-

ments given by 
{
σ 2 

i 

}N 

i =1 
. In deriving the covariance �, we

used Proposition 1 , i.e., that in equilibrium we can rewrite

z t (having, for now, removed the fixed effects) as z t =
( I N − φG ) 

−1 νt , where νt has a normal distribution with

zero mean and covariance �ν . 

Therefore, the likelihood of the model is given by 

ln L ≡ −T N 

2 

ln ( 2 π) − T 

2 

N ∑ 

i =1 

ln σ 2 
i −

N ∑ 

i =1 

1 

2 σ 2 
i 

T ∑ 

t=1 

ν2 
i,t . 

(25)

The error term, νi,t , contains the parameters and observ-

ables 

νi,t = { ( I N − φG ) ( L t − X t β) } i. , (26)

where { } i. is the operator that returns the i th row of its ar-

gument. In the likelihood, all the variables, L t and X t , and

the network, G , are observed, and z t disappears because it

is substituted out by L t − X t β ≡ z t . We maximize the likeli-

hood to obtain the parameter estimates using standard op-

timization methods. 

The reduced form specification in Eq. (24) has the same

structure and properties as the seemingly unrelated re-

gressions (SUR model: see e.g. Zellner, 1962 ). Hence, one

can consistently estimate the mean equation parameter, β
(e.g., via linear projections), and use the fitted residuals

to construct a consistent estimate of the covariance ma-

trix �. However, can we recover the structural parameters

φ and 

{
σ 2 

i 

}N 

i =1 
? Being symmetric, the estimated 

̂ � gives

N(N + 1) / 2 equations, while we have to recover N + 1 pa-

rameters in M �νM 

� ( φ plus the bank-specific volatilities).

Therefore, as long as � is full-rank, the system is over-

identified if we have three or more banks (with linearly

independent links). In a nutshell, the identification of this
839 
spatial error formulation works like that of structural vec- 

tor autoregressions (see, e.g., Sims and Zha, 1999 ) where 

the contemporaneous propagation of shocks among depen- 

dent variables (captured by φ in our setting) can be recov- 

ered from the reduced-form covariance structure. 17 

Note that what allows the identification of φ and {
σ 2 

i 

}N 

i =1 
are exactly two key restrictions coming from the 

theoretical model: (1) the observed liquidity holdings, l i,t , 

can be decomposed into q i,t , driven by the control vari- 

ables in X t , and z i,t , banks’ liquidity contribution to the 

payment system; (2) Proposition 1 states how the net- 

work component z i,t depends on the bank-specific (struc- 

tural) shocks in equilibrium. The first restriction defines 

the mean equation in Eq. (24) , allowing us to recover z i,t 
as residuals. 18 The second restriction imposes a structure 

on the covariance matrix of z i,t , allowing us to recover φ

and 

{
σ 2 

i 

}N 

i =1 
. 

To sharpen the intuition, let us consider a system of 

three banks and the simplest network, a chain: Bank 1 bor- 

rows from Bank 2, and 2 from 3, so 

G = 

⎡ ⎣ 

0 1 0 

0 0 1 

0 0 0 

⎤ ⎦ , and 

M �νM 

� = 

⎡ ⎣ 

σ 2 
1 + φ2 σ 2 

2 + φ4 σ 2 
3 φσ 2 

2 + φ3 σ 2 
3 φ2 σ 2 

3 

φσ 2 
2 + φ3 σ 2 

3 σ 2 
2 + φ2 σ 2 

3 φσ 2 
3 

φ2 σ 2 
3 φσ 2 

3 σ 2 
3 

⎤ ⎦ . 

The volatility of z 1 is σ 2 
1 

+ φ2 σ 2 
2 

+ φ4 σ 2 
3 

. The first term 

is the volatility of Bank1’s structural shock, ν1 . The sec- 

ond term is the volatility of Bank2’s structural shock trans- 

mitted by one step to Bank 1, i.e., φz 2 , and the third 

term reflects Bank3’s shock transmitted by two steps (via 

Bank 2) to Bank 1, i.e., φ2 z 3 . By the same logic, the 

volatility of z 2 is σ 2 
2 

+ φ2 σ 2 
3 

, capturing Bank2’s exposure 

to its own shock and Bank3’s shock, while Bank 3 only 

loads on its own shock. The covariance between z 1 and 

z 2 is φσ 2 
2 + φ3 σ 2 

3 , reflecting Banks1’s and2’s exposure to 

Banks2’s and3’s shocks. The covariance between z 2 and 

z 3 is φσ 2 
3 

as it only arises from the one-step transmis- 

sion of Bank3’s shock to Bank 2, i.e., φz 3 . Such covariances 

are precisely due to network connections, and their esti- 

mates identify the network effect parameter, φ. Given σ 2 
3 

= 

{ ̂  �} 3 , 3 , we can solve for φ using either the covariance be- 

tween z 1 and z 3 , i.e., { ̂  �} 1 , 3 = φ2 σ 2 
3 , or the covariance be- 

tween z 2 and z 3 , i.e., { ̂  �} 2 , 3 = φσ 2 
3 

, so the system is clearly 

over-identified. Moreover, given the estimates of σ 2 
3 

and φ, 

either the volatility of z 2 , i.e., { ̂  �} 2 , 2 = σ 2 
2 

+ φ2 σ 2 
3 

, or the 

covariance between z 1 and z 2 , i.e., { ̂  �} 1 , 2 = φσ 2 
2 

+ φ3 σ 2 
3 

, 

give a solution for σ 2 
2 

. Finally, given φ, σ 2 
2 

, and σ 2 
3 

, { ̂  �} 1 , 1 
pins down σ 2 . 
i i =1 
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A key identifying assumption is that the structural

shocks, νi , are independent across banks, and thus, after

controlling for the observed bank characteristics and macro

variables, the residuals’ (i.e., z i ’s) correlations only arise

from the network linkages. Therefore, the impact of the

network, φ, is identified by such correlations. Accordingly,

in the estimation, we saturate the mean equation by con-

trolling for a rich set of bank characteristics and macro

variables, so the residual correlations are driven by the

network linkages instead of missing variables that induce

comovement among banks’ liquidity choices. 

Note that, in general, if we knew the parameters φ and{
σ 2 

i 

}N 

i =1 
we could actually premultiply the specification in

Eq. (24) by the Cholesky decomposition of �−1 , obtaining

a transformed system with spherical errors, and therefore

gaining efficiency of the estimates – e.g., we could do the

canonical GLS transformation. For this reason, rather than

employing a two-step procedure, we jointly estimate the

mean equation and covariance parameters by maximizing

the quasi-maximum likelihood function (as described in

detail in the Appendix). 

The above identification argument is not affected by

time variation in G as long as we have a well-defined un-

conditional variance. 19 Furthermore, the identification of φ
does not depend on whether we can separately identify

network fixed effects (the μ̄i ) from the bank fixed effects

(the αbank 
i 

). Adding these fixed effects, Eq. (24) becomes 

L t = αbank + X t β + ( I N − φG ) 
−1 μ̄ + εt , εt ∼ iid ( 0 N , �) , 

(27)

where αbank is the vector of bank specific fixed effect,

μ̄ is the vector of bank specific μ̄i , εt ≡ ( I N − φG ) 
−1 νt 

is orthogonal to X t , and as before, � = M V M 

� with M =
( I N − φG ) 

−1 
. Once again, the above is an SUR; hence, the

logic for the identification of φ stays unchanged, indepen-

dent from whether we can separately identify μ̄ and αbank .

It is clear that in the above equation, αbank and μ̄ are

in general not separately identified, even with time varia-

tion in the network matrix – i.e., if we replace G with G t in

the above equation. This is because I N (the identity matrix

and regressor associated with αbank ) and ( I N − φG t ) 
−1 

(the

regressor associated with μ̄ in Eq. (24) ) are not linearly in-

dependent when G t 1 N = 1 N for all t , i.e., when G t is always

a right stochastic matrix. 20 Fortunately, our sample has an

interesting feature: banks 7 and 11 were not connected

with other banks in 14 and 145 days, respectively. These

159 days do not overlap. They cover 13.5% of the time and

spread across our subsamples. On such days, one row of G t 

has all elements equal to zero, and thus, G t 1 N � = 1 N . There-

fore, we can separately identify μ̄ and αbank using the time

variation in G . 
t 

19 The identification is in this case analogous to that of S-VARs with 

time varying volatility as, e.g., in Primiceri (2005) . 
20 To see this, note that ( I N − φG t ) 

−1 
1 N = 

∑ ∞ 
k =0 φ

k G k t 1 N = 

(
1 

1 −φ

)
1 N = (

1 
1 −φ

)∑ N 
i =1 { I N } i , i.e., a linear combination of the columns of ( I N − φG t ) 

−1 

is equal to a linear combination of the columns of I N . 

840 
4.3. Systemic risk 

The empirical model in Eqs. (22) and (23) highlights 

that the network is a shock propagation mechanism: a 

shock to bank j is transmitted to bank i through φg i j,t , so 

if φ > 0 (strategic complementarity), the network amplifies 

shocks, and if φ < 0 (strategic substitution), the network 

buffers shocks. 

The ultimate impact of shocks to all banks is 

εt = ( I − φG t ) 
−1 νt = M ( φ, G t ) νt , (28) 

where νt = 

[
ν1 ,t , . . . , νn,t 

]� 
denotes the structural bank 

shocks and, as shown by Eq. (13) , M ( φ, G t ) records the 

routes that propagate νt with the direction governed by 

φ. We can define ( 1 − φ) 
−1 

as the “average network mul- 

tiplier”. If G t is a right stochastic matrix (i.e., G t 1 N = 1 N ), 

then a unit shock to the system equally spread across 

banks (i.e., νt = ( 1 /n ) 1 N ) has an ultimate impact on aggre- 

gate liquidity equal to ( 1 − φ) 
−1 

. 21 

With the estimated parameters at hand, we identify the 

key contributors of systemic risk (the “risk key players”). 

First, we can decompose the aggregate network-induced 

liquidity, Z t ≡
∑ 

i z i,t , as 

Z ∗t = 1 

� M ( φ, G t ) ̄μ︸ ︷︷ ︸ 
level effect 

+ 1 

� M ( φ, G t ) νt ︸ ︷︷ ︸ 
risk effect 

, (29) 

where μ̄ ≡ [ ̄μ1 , . . . , μ̄n ] 
� . The first term captures the net- 

work level effect, and the second captures the risk effect 

by aggregating idiosyncratic shocks. Note that even when 

N is large, idiosyncratic shocks may not vanish in aggrega- 

tion because of the network effects in M ( φ, G t ) (similar to 

Acemoglu et al., 2012 ). 

We measure risk by the conditional volatility of the ag- 

gregate liquidity, so we simply work with the demeaned 

liquidity: 

 ar t ( Z 
∗) = 1 

� M ( φ, G t ) �νM ( φ, G t ) 
� 

1 , (30) 

where �ν is the covariance matrix of νt , a diagonal matrix 

whose i th diagonal element is σ 2 
i 

. Here we have used the 

fact that G t is predetermined with respect to time- t infor- 

mation. To identify risk key players, we define the network 

impulse response function as follows. 

Definition 1 (Network Impulse Response Function). The 

network impulse response function of aggregate liquidity, 

Z ∗t , to a one standard deviation shock to a bank i , is given 

by 

NIRF i ( φ, σi , G t ) ≡ ∂Z ∗t 
∂νi,t 

σi = 1 

� { M ( φ, G t ) } .i σi , (31) 

where the operator { } .i returns the i th column of its argu- 

ment. 

The network impulse response is the shock-size 

weighted outdegree centrality of bank i . As a reminder, for 

| φ| < 1 , 

1 

� { M ( φ, G t ) } .i = 1 

� {I + φG t + φ2 G 

2 
t + . . . 

}

.i 

21 From 1 N = ( I N − φG t ) 
−1 

( I N − φG t ) 1 N = ( I N − φG t ) 
−1 

1 N ( 1 − φ) , we have 

M ( φ, G t ) 1 N = ( 1 − φ) 
−1 

1 N . 
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= 1 

� 

{ 

∞ ∑ 

k =0 

φk G 

k 
t 

} 

.i 

, 

where the initial element in the series captures direct ef-

fects of a unit shock to bank i , the next element is the sum

of first-order outbound links, the third element is the sum

of second-order outbound links, and so on. NIRF i ( φ, σi , G t )
measures a bank’s contribution to the volatility of aggre-

gate liquidity and thus identifies the risk key player by

providing a clear ranking of the riskiness of each bank

from a systemic perspective. 

Definition 2 (Risk Key Player). The risk key player i ∗t , given

by the solution of 

i ∗t = arg max 
i =1 , ... ,N 

NIRF i ( φ, σi , G t ) , (32)

is the one that contributes the most to the conditional

volatility of aggregate network liquidity. 

A bank’s risk contribution depends on the size of its

own shock σi , the network attenuation factor, φ, and all

the direct and indirect network links. The network impulse

response functions offer a natural decomposition of volatil-

ity, since 

ar t ( Z 
∗) ≡ v ec 

({ NIRF i ( φ, σi , G t ) } N i =1 

)� 
v ec 
({ NIRF i ( φ, σi , G t ) } N i =1 

)
, 

(33)

where “v ec” is the vectorization operator. 

We can isolate the purely network-driven part of the

impulse response, that is, the impact beyond direct effects

of bank-level shocks, which we call the “excess NIRF”: 

N IRF e i ( φ, σi , G t ) ≡ N IRF i ( φ, σi , G t ) − σi . (34)

The sign of NIRF e 
i ( φ, σi , G t ) depends on the type of equi-

librium (strategic substitution or complementarity), i.e., the

sign of φ. Note that it is straightforward to compute con-

fidence bands for the estimated NIRF s using the delta

method, since they are functions of ˆ φ and { ̂  σi } N i =1 
that have

canonical asymptotic Gaussian distribution (see the Online

Appendix). 

After we obtain the estimates of φ and { σi } N i =1 , we com-

pare the volatility of aggregate liquidity from the decen-

tralized equilibrium, i.e., V ar t ( Z 
∗) defined in Eq. (30) , and

the volatility of aggregate liquidity from the planner’s so-

lution given by 

 ar t ( Z 
p ) = 

(
1 

1 + φ/η

)2 

1 

� M 

p ( φ, η, G t ) �νM 

p ( φ, η, G t ) 
� 

1

(35)

where Z p ≡ ∑ 

i z 
p 
i,t 

and M 

p ( φ, η, G t ) is defined in

Proposition 2 . 

Finally, we also identify the “systemic level key player”,

whose removal from the system causes the largest reduc-

tion of aggregate liquidity level in expectation. 22 A key in-

put is the average liquidity valuation, i.e., μ̄. Since our em-

pirical analysis focuses on shock propagation through the
22 This definition is in the same spirit as the concept of the key player in 

the crime network literature, e.g., Ballester et al. (2006) , where targeting 

key players is important for crime reduction. 

841 
network instead of the sample average of liquidity level, 

we present the theoretical results on the level key players 

in Appendix A.3 . 

4.4. Alternative specification 

As a specification test of our model, we consider a 

more general formulation that allows for richer network 

interactions. That is, we model the liquidity holding game 

as a spatial Durbin model (SDM – see, e.g. LeSage and 

Pace, 2009 ) where a bank’s liquidity depends directly on 

other banks’ liquidity and pairwise control variables 

l i,t = φ
∑ 

j � = i 
g i j,t l j,t + 

M ∑ 

m =1 

βbank 
m 

x m 

i,t + 

P ∑ 

p=1 

χp x 
p 
t 

+ 

N ∑ 

j=1 

g i j,t 

M ∑ 

m =1 

θm 

x m 

j,t + μ̄i + νi,t ∼ iid 
(
0 , σ 2 

i 

)
. 

In Appendix A.2 , we show that the above formulation 

is the equilibrium outcome of a network game in which 

banks can borrow both the neighbors’ liquidity held for 

their depositors’ payments (i.e., z i,t ) and, up to a frac- 

tion ρ , the neighbors’ liquidity held for their own pay- 

ments (i.e., q i,t ). The coefficients χp and θm 

are related to 

the main model as follows: χp ≡ [ 1 − φ( 1 − ρ) ] βmacro 
p and 

θm 

≡ −φ( 1 − ρ) βbank 
m 

. Therefore, this formulation nests the 

main model as a special case: when ρ = 0 , i.e., banks can 

only access neighbors’ z i,t , we can rearrange the equation 

and get back to the main model, 

l i,t −
M ∑ 

m =1 

βbank 
m 

x m 

i,t −
P ∑ 

p=1 

βmacro 
p x p t ︸ ︷︷ ︸ 

z i,t 

= φ
∑ 

j � = i 
g i j,t 

[ 

l j,t −
M ∑ 

m =1 

βbank 
m 

x m 

j,t −
P ∑ 

p=1 

βmacro 
p x p t 

] 

︸ ︷︷ ︸ 
z j,t 

+ μ̄i + νi,t . 

Note that our baseline SEM is a conservative approach, 

leaving a minimal amount of variation in liquidity holdings 

to be driven by the network. In contrast, the SDM allows 

the network to play a larger role since banks’ reserve hold- 

ings in this case depend not only on shocks to other banks 

but also on other banks’ characteristics. In Section 6 , we 

compare the estimates of SDM with those of our bench- 

mark model (SEM) in rolling windows. Given that the SDM 

nests the SEM, the comparison can be viewed as a specifi- 

cation test of the main model. In the Online Appendix, we 

discuss identification and estimation of the SDM parame- 

ters. 

5. Data description 

We study the liquidity holdings of banks that are mem- 

bers of CHAPS, the U.K. large-value payment system. These 

eleven banks are at the core of the U.K. banking system, 

conducting transactions for their own purpose and on be- 
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half of their clients and hundreds of nonmember banks. 23

Their liquidity holdings serve the critical purpose of buffer-

ing intraday flow imbalances, ensuring the functioning of

the transaction system for the whole economy. Our sample

covers the period from January 2006 to September 2010,

which allows us to estimate the network effect in the pre-

crisis period, during the financial crisis, and later in the

era of quantitative easing. We focus on the daily variation

of liquidity holdings, so the model is estimated at daily

frequency while incorporating variables constructed from

higher frequency data. 

Liquidity holdings. To measure the dependent variable

l i,t , that is, the liquidity holdings of each bank, we use cen-

tral bank reserve holdings (logarithm). We supplement this

with the collateral assets that are posted at the Bank of

England and allow banks to access intraday liquidity from

the Bank of England (these repos are unwound at the end

of each day). 

The weekly average of aggregate liquidity in the system

(the sum of banks’ holdings) is reported in Fig. 1 . The fig-

ure shows a substantial upward trend in the period after

the U.S. subprime mortgage crisis that saw several mar-

ket disruptions. This trend is consistent with the evidence

that banks hoard liquidity in crisis (e.g., Acharya and Mer-

rouche, 2010 ), but this upward trend is dwarfed by the

steep run-up in response to the Asset Purchase Programme

(also known as quantitative easing) that almost tripled the

aggregate liquidity. Note that since we include week fixed

effects and macro control variables, this trend is unlikely

to affect our estimate of φ, and in particular, induce a pos-

itive bias in 

ˆ φ that is due to trend-induced comovement

(i.e., spurious strategic complementarity in banks’ liquidity

holdings). 

Interbank network. We construct the interbank net-

work G t using interbank borrowing data that we ex-

tract from overnight interbank payments using the

Furfine (20 0 0) algorithm. This algorithm is a common ap-

proach in the literature on the interbank money market,

identifying pairs of payments between two banks where

the outgoing payments are loans and the incoming pay-

ments are repayments (equal to the outgoing payment plus

an interest rate). It has been tested thoroughly and accu-

rately tracks the LIBOR rate. 24 Furfine (20 0 0) showed that
23 The banks are Halifax Bank of Scotland (owned by Lloyds Banking 

Group), Barclays, Citibank, Clydesdale (owned by National Australia Bank), 

Co-operative Bank (owned by The Co-operative Group), Deutsche Bank, 

HSBC (which acquired Midland Bank – one of the historical “big four”

sterling clearing banks, in 1999), Lloyds TSB, Royal Bank of Scotland (in- 

cluding NatWest), Santander (formerly Abbey, Alliance & Leicester and 

Bradford & Bingley, owned by Banco Santander of Spain), and Standard 

Chartered. For most of the 20th century, the phrase “the Big Four” re- 

ferred to the four largest sterling banks, which acted as clearing houses 

for bankers’ cheques. These were Barclays Bank, Midland Bank (now part 

of HSBC), Lloyds Bank (now Lloyds TSB Bank and part of Lloyds Bank- 

ing Group), and National Westminster Bank (“NatWest”, now part of The 

Royal Bank of Scotland Group). Currently, the largest four U.K. banks are 

Barclays, HSBC, Lloyds Banking Group, and The Royal Bank of Scotland 

Group, closely followed by Standard Chartered – and all of these banks 

are in our sample. 
24 The data are only available for CHAPS banks. Thus, some loans may 

be attributed to a settlement bank when in fact the payments are made 

on behalf of its customers. Moreover, where a loan is made between one 

842 
when applied to Fedwire data, the algorithm accurately 

identifies the Fed Funds rate. 25 

The loan data are compiled to form an interbank lend- 

ing and borrowing network. In particular, the element g i j,t 

of the adjacency matrix G t is given by the average frac- 

tion of bank’s i overnight loans from bank j in the previous 

month ending on day t − 1 . 

By construction, G t is a square right stochastic matrix. 

Its largest eigenvalue is therefore equal to one. This implies 

that the strength of shock propagation on the network de- 

pends on the second largest eigenvalue of G t , which is 

plotted in Fig. 2 . 26 There was a substantial increase in the 

crisis period, but what is striking is the large variation of 

network topology after QE. The variation of G t is critical for 

us to empirically identify the network parameters. 

Another way to exhibit the variation of G t is to plot a 

measure of network cohesiveness, for which we use the 

average clustering coefficient (ACC – see Watts and Stro- 

gatz, 1998 ) 

ACC t = 

1 

N 

N ∑ 

i =1 

CL i ( G t ) , 

CL i,t = 

# { jk ∈ G t | k � = j, j ∈ n i ( G t ) , k ∈ n i (G t ) } 
# { jk | k � = j, j ∈ n i (G t ) , k ∈ n i (G t ) } 

where n i (G t ) is the set of players that have a direct link 

with i and # { . } is the count operator. The numerator is the 

number of pairs linked to i that are also linked to each 

other, while the denominator is simply the number of pairs 

linked to i . Therefore, ACC measures the average proportion 

of banks that are connected to i and also connected with 

each other. By construction, it ranges from 0 to 1. A higher 

value means that the network is more dense. 

The time series of ACC is shown in Fig. 3 . At the be- 

ginning of our sample, the network is highly cohesive 

since, on average, approximately 80% of pairs of banks con- 

nected to any given bank are also connected to each other. 

The degree of connectedness appears to have a decreasing 

trend during 20 07–20 08, and a substantial and sudden de- 

crease following the Asset Purchase Programme, when ACC 

dropped by approximately one-quarter of its pre-crises av- 

erage. This is related to the reduced interbank borrowing 
customer of a settlement bank and another, this transaction will not be 

settled through the payment system but rather across the books of the 

settlement bank (internalization). Internalized payments are invisible to 

the BoE, so they are a part of the overnight money market that is not 

captured here. 
25 As documented in Armantier and Copeland (2012) , Furfine’s algorithm 

can be affected by Type I and, to a lesser extent, Type II, errors. Never- 

theless, this is less of a concern in our application because of the fol- 

lowing: first, as documented in Kovner and Skeie (2013) , at the overnight 

frequency that we focus on, interbank exposures measured by the algo- 

rithm are highly correlated with the Fed funds borrowing and lending 

reported in bank quarterly regulatory filings; second, and more impor- 

tantly, instead of using the daily borrowing and lending data, we smooth 

these exposures by computing rolling monthly averages, therefore greatly 

reducing the relevance of false positives and negatives in the identifica- 

tion of interbank relationships. Furthermore, we apply several robustness 

checks on our measure of interbank linkages (results available upon re- 

quest). 
26 This is because G k can be rewritten in Jordan normal form as PJ k P −1 , 

where J is the (almost) diagonal matrix with eigenvalues (or Jordan blocks 

in case of repeated eigenvalues) on the main diagonal. 
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Fig. 1. Weekly rolling average of aggregate liquidity holdings of eleven CHAPS member banks at the beginning of the day (Unit: £1). 

Fig. 2. Second largest eigenvalue of the matrix G t with elements g i j,t given by the average share of bank’s i overnight loans from bank j in the previous 

month ending on day t − 1 . 
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Fig. 3. Average clustering coefficient (see Watts and Strogatz, 1998 ) of the interbank network. 
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needs during the QE period owing to the availability of

additional reserves from the Bank of England (combined

with a move towards increased collateralization of borrow-

ing and an overall deleveraging; see, e.g., Westwood, 2011 ).

This interpretation is consistent with dynamics of gross

borrowing value in the interbank network. 27 

Macro control variables. To control for the aggregate

liquidity condition, we use the LIBOR rate as a proxy for

funding cost together with the interbank rate premium

(the average overnight borrowing rate of the CHAPS banks

minus the LIBOR rate). 28 All control variables are lagged

by one day so that they are predetermined with respect to

time t shocks. 

Since banks’ decisions to hold liquidity are likely to be

influenced by the volatility of their daily payment out-

flows, we construct a measure of intraday payment volatil-

ity as 

 olP ay t = 

√ 

1 

88 

88 ∑ 

τ=1 

(
P out 

t,τ

)2 
. (36)
27 We report the monthly rolling average of daily sterling value of gross 

borrowing in the Online Appendix. 
28 LIBOR is the average of borrowing rates reported by selected banks, 

not CHAPS banks. The interbank rate premium can be positively or nega- 

tively correlated with banks’ liquidity holdings. First, when CHAPS banks 

face more risks, they may hold more liquidity and face higher borrow- 

ing costs. Second, interbank rate premium measures an opportunity cost 

– CHAPS banks can borrow to lend at the LIBOR rate rather than hold 

reserves. So, when LIBOR is high (interbank rate premium low), banks 

prefer to hold less liquidity. 

844 
where P out denotes payment outflows and 88 is the num- 

ber of ten-minute time intervals (the unit of time for pay- 

ment recording in our sample) within a day. The time se- 

ries is plotted in the Online Appendix. Outflow volatil- 

ity declined steadily throughout the crisis, suggesting that 

banks in aggregate smoothed intraday outflow. 

We also control for the turnover rate in the payment 

system. This variable is defined as 

T OR t = 

∑ N 
i =1 

∑ 88 
τ=1 P 

out 
i,t,τ∑ N 

i =1 max 
{

max τ∈ [ 1 , 88 ] [ CNP (τ ; i, t) ] , 0 

} , 

where the cumulative net debit position (CNP) is defined 

as the difference between payment outflows and inflows 

(see also Benos et al., 2010 ). The numerator is the total 

payments in day t , while the denominator is the sum of 

maximum intraday net debt positions of all banks. The 

time series is plotted in the Online Appendix. The turnover 

rate increased during the crisis period and declined after 

the introduction of QE. 

Since banks have some discretion on the timing of in- 

traday outflows, they could behave strategically – to pre- 

serve liquidity, banks may expedite inflows and delay out- 

flows. Therefore, we control for the right kurtosis ( rK t ) of 

intraday payment time. 29 The time series is plotted in the 
29 We define right and left kurtosis (denoted, respectively, by rK t and 

lK t ) as the part of kurtosis generated by payment times, respectively, 

above and below the average payment time of the day: 

rK t = 

∑ 

τ>m s 
( τ−m t 

σt 
) 4 ∑ 88 

τ=1 ( 
τ−m t 

σt 
) 4 

, and lK t = 

∑ 

τ<m t 
( τ−m t 

σt 
) 4 ∑ 88 

τ=1 ( 
τ−m t 

σt 
) 4 

;
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Table 1 

Spatial Error Model Estimation. Estimation results for Eqs. (22) and (23) . 

Periods 1, 2, and 3 correspond, respectively, to: before the Northern 

Rock/BNP Paribas Fund crisis, after it but before the first BoE announce- 

ment of Asset Purchase Programme, and the QE period. The t-statistics 

are reported in parentheses under the estimated coefficients. Standard 

errors are QMLE-robust ones, and the delta method is used for the av- 

erage network multiplier, 1 / (1 − ˆ φ) . In Panel A, the adjacency matrix is 

computed using the interbank borrowing data, while in Panels B and 

C, we respectively use lending and borrowing plus lending (all row- 

normalized). 

Period 1 Period 2 Period 3 

Panel A: G t based on borrowing 

ˆ φ 0 . 8137 
( 21 . 47 ) 

0 . 3031 
(1 . 90) 

−0 . 1794 
(−4 . 96) 

R 2 66 . 01% 92 . 09% 91 . 53% 

1 / 

(
1 − ˆ φ

)
5 . 3677 

(4 . 92) 
1 . 4349 

(4 . 37) 
0 . 8479 
(32 . 61) √ 

Var(Z t | ̂ φ) 
Var(Z t | φ=0) 

5.59 1.25 0.89 

Panel B: G t based on lending 

ˆ φ 0 . 8209 
( 20 . 38 ) 

0 . 2573 
( 1 . 23 ) 

−0 . 3925 
( −7 . 18 ) 

R 2 66 . 02% 91 . 63% 91 . 61% 

1 / 

(
1 − ˆ φ

)
5 . 5835 

(4 . 45) 
1 . 3464 

(3 . 54) 
0 . 7181 
(25 . 49) √ 

Var(Z t | ̂ φ) 
Var(Z t | φ=0) 

5.71 1.45 0.85 

Panel C: G t based on borrowing and lending 

ˆ φ 0 . 8204 
( 19 . 36 ) 

0 . 3258 
( 1 . 89 ) 

−0 . 2824 
( −6 . 10 ) 

R 2 63 . 98% 92 . 22% 91 . 70% 

1 / 

(
1 − ˆ φ

)
5 . 5679 

(4 . 24) 
1 . 3464 

(3 . 91) 
0 . 7181 
(26 . 74) √ 

Var(Z t | ̂ φ) 
Var(Z t | φ=0) 

5.94 1.15 0.74 
Online Appendix, showing a substantial increase in the QE

period. 

Beyond these control variables at daily frequency, we

add week fixed effects to account for potential missing

variables that fluctuate at lower frequencies, such as mon-

etary policy conditions beyond the interbank rates and real

economic activities that drive payment flows. 

Bank characteristics. Despite the fact that we control

for average interest rates, we also control for the bank-

specific overnight borrowing rate, which is a daily volume-

weighted average. As we report in the Online Appendix,

there was a substantial increase in the cross-sectional

dispersion of the overnight borrowing rates during tur-

moil periods, such as the collapse of Northern Rock and

Lehman Brothers. This cross-sectional dispersion persisted

during the QE period. Therefore, it is critical to account for

the heterogeneity in banks’ overnight borrowing rates. As

macro variables, all bank-level control variables are lagged

by one day. 30 

We also control for other bank-level variables: the level

of intraday payment outflow ( Le v Pay i,t ≡
∑ 88 

τ=1 P 
out 
i,t,τ

); the

right kurtosis of intraday payment inflow time ( rK 

in 
i,t 

) and

outflow time ( rK 

out 
i,t 

); the volatility of intraday payment

outflow ( V olPay i,t , constructed as in Eq. (36) using bank-

level flows); the liquidity used ( LU i,t , as in Benos et al.,

2010 and defined in the Appendix); total assets; the repo

liabilities to total assets ratio; the retail deposits to to-

tal assets ratio; the interbank borrowing rate; total in-

terbank lending and borrowing; the 5-year credit default

swap (CDS) spread; and daily stock returns. 

6. Estimation results 

6.1. Subsample estimation 

We estimate our model [ Eqs. (22) and (23) ] in three

subsamples of roughly equal size: the period before the

Northern Rock and BNP Paribas Fund crisis (August 9,

2007), the period after it and before QE (January 19, 2009),

and the QE period. These three periods are marked by dis-

tinct liquidity conditions, and as documented in Section 5 ,

different behavior of the network and other variables. Pe-

riod 1 was a relatively tranquil period. Period 2 saw several

significant events, such as the subprime mortgage fund cri-

sis (e.g., BNP Paribas fund freezing on August 9, 2007), the

run on Northern Rock (the U.K.’s first in 150 years), the

Federal Reserve intervention in Bear Stearns and its sub-

sequent sale to JPMorgan Chase, and the bankruptcy of

Lehman Brothers. Period 3 began with a regime switch in

monetary policy. The announcement of the Bank of Eng-

land on January 19, 2009 marked the beginning of quanti-

tative easing in the U.K. 
where m t and σt are defined as flow-weighted average payment time and 

standard deviation, i.e., 

m t = 1 

88 

88 ∑ 

τ=1 

τ

(
P OUT 

t,τ∑ T 
t=1 P 

OUT 
t,τ

)
, and σ 2 

t = 1 

88 − 1 

88 ∑ 

τ=1 

[
τ

(
P OUT 

t,τ∑ 88 
t=1 P 

OUT 
t,τ

)
− m t 

]2 

. 

30 For variables available at lower than daily frequency (monthly), we 

use the latest lagged observation. These variables are total assets, the ratio 

of repo liabilities to assets, and the ratio of retail deposits to total assets. 

845 
The network multiplier. The estimation results for 

these three subsamples are reported in Panel A of 

Table 1 , where we report only the estimates of the spa- 

tial dependency parameter φ (first row), the R 2 of the 

regression (second row), the implied average network 

multiplier (third row) 1 / (1 − φ) that was discussed in 

Section 4 , as well as the ratio of the volatility of net- 

work liquidity to the counterfactual volatility when φ = 

0 . Omitted from the table are the coefficient estimates 

of control variables, which are reported in the Online 

Appendix. 

Recall that φ > 0 ( < 0 ) implies that banks’ liquidity 

holding decisions are strategic complements (substitutes) 

and that this tends to amplify (reduce) the impact of bank- 

level shocks to aggregate liquidity. In the first period, the 

estimate of φ is 0.8137 and highly significant, indicat- 

ing a substantial network amplification effect: a £1 shock 

equally spread across banks would result in a 1 / 

(
1 − ˆ φ

)
= 

£5 . 3677 shock to the aggregate liquidity. 

In the second period, the coefficient φ is substantially 

lower in magnitude and marginally significant, implying 

weak strategic complementarity and an average network 

multiplier of approximately 1 / ( 1 − 0 . 3031 ) = 1 . 4349 . This 

finding suggests that in response to the turbulence in fi- 

nancial markets that have characterized the second pe- 

riod, banks’ marginal cost of holding liquidity increased 
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significantly (i.e., ψ became large), so strategic substitution

gained strength. 

In the third period, ˆ φ becomes negative, −0 . 1794 , and

statistically significant, implying an average network mul-

tiplier of 0.8479. This result is particularly interesting

since strategic substitution became the dominant force in

banks’ liquidity holding decisions, as in Bhattacharya and

Gale (1987) . As a result, the network buffers the impact of

shocks from individual banks on aggregate liquidity. This

finding also sheds light on how the massive liquidity injec-

tion by the central bank affects the network effect. Overall,

the model fits the data fairly well in the three subsamples,

with R 2 in the range of 66% –92% . 

The last row of Panel A reports√ 

V ar(Z t | ̂  φ) /V ar(Z t | φ = 0) , i.e., the ratio of the volatil-

ity of aggregate liquidity implied by our estimate of φ
to the counterfactual volatility if there were no network

externalities. In the first period, the network multiplier

generates a 459% increase in volatility. The excess volatil-

ity from network effects dropped to 25% in the crisis

period, and turned negative, −11%, in the QE period. The

Online Appendix reports 

√ 

V ar(z i,t | ̂  φ) /V ar(z i,t | φ = 0) , the

network volatility multiplier for each bank. 

For robustness, in Panels B and C, we estimate our net-

work model with two alternative constructions of the ad-

jacency matrix G t . In Panel B, we use the lending flows,

while in Panel C, we use the combined borrowing and

lending flows. In both cases, the adjacency matrix is row-

normalized (right stochastic). Such an exercise is meaning-

ful because, as we emphasized when constructing the the-

oretical model, network linkages reflect the interbank re-

lationships. Thus, a linkage is not necessarily just about

borrowing. If a bank lends to another bank, a relationship

formed through this transaction may facilitate future bor-

rowing. Overall, the estimates in Panels B and C are very

similar to those in Panel A. 

Additionally, we also consider a counterparty-adjusted

version of the G t used in Panel A. That is, after obtain-

ing the average fraction of bank’s i overnight loans from

bank j in the previous month ending on day t − 1 , we di-

vide this fraction by one plus the number of banks that

bank j lends to in that month since some banks have zero

borrowers in some subsample periods. 31 As in the other

specifications, we normalize by rows so that the new ad-

jacency matrix is still right stochastic. Doing such an ad-

justment captures the possibility that if bank j lends to

many banks, this might reduce the likelihood of it being

able to lend to bank i . This counterparty-adjusted G t es-

sentially re-weights the baseline G t to deliver an “effective”

measure of access to network liquidity. Such re-weighting

is consistent with our theoretical model since therein the

entries of G t are meant to capture the availability of funds

through network connections. The Online Appendix reports

the estimation results obtained with this adjacency matrix.
31 We have also constructed another adjusted adjacency matrix G t 
which re-weights g i j,t by dividing the number of bank j’s borrowers ex- 

cept for the banks with zero borrowers. In the latter case, we leave the 

entries in G t unchanged. Estimation results are very similar so we choose 

to report only one of the two in the paper. 

846 
The point estimates of φ are very similar to the ones in 

Panel A of Table 1 and the estimates of coefficients of con- 

trol variables are close to the ones obtained from using the 

baseline G t (reported in the Online Appendix). 

Network impulse response and key players. Next, us- 

ing the estimates, we compute the network impulse re- 

sponse functions to identify risk key players in each sub- 

sample. The results are reported together with banks’ net 

borrowing amount and the network graph. 

In the upper panel of Fig. 4 , we report each bank’s 

excess network impulse response to a unit shock, i.e., 

N IRF e 
i 

(
ˆ φ, 1 , ̄G 1 

)
= N IRF i 

(
ˆ φ, 1 , ̄G 1 

)
− 1 , defined in Eq. (34) , 

where Ḡ 1 denotes the average G t in Period 1. It mea- 

sures Bank i ’s contribution to systemic risk – the network- 

induced reaction of aggregate liquidity to a unit shock to 

Bank i . Note that if either φ = 0 or there are no net- 

work linkages ( ̄G 1 = 0 ), a unit shock to Bank i is a unit 

shock to the aggregate liquidity, and thus, the excess re- 

sponse is zero. We also plot one and two standard devia- 

tion bands. As a point of reference, we show the average 

excess network multiplier, 

(
1 − ˆ φ

)−1 

− 1 = 4 . 3677 (Panel 

A of Table 1 ), i.e., how the network as the whole amplifies 

a unit shock equally spread across banks. 

Since (as per Eq. (33) ), a large NIRF for a given bank 

implies a larger contribution to the volatility of total liq- 

uidity, a key message from the upper panel of Fig. 4 is 

that a handful of key players (banks 5, 6, and 9) are re- 

sponsible for most of the systemic risk. For instance, a 

shock of £1 to Bank 5, 6, or 9 would generate an excess 

response of aggregate liquidity equal to £13 . 9 , £8 . 9 , and 

£13 . 8 , respectively. A shock to Bank 4 would induce an 

excess response similar to the network average, while the 

remaining seven banks contribute relatively little to shock 

amplification. 

The comparison between the upper and central panels 

makes clear that risk key players are not necessarily large 

net borrowers – large net borrowers and lenders are both 

likely to be key risk contributors. This is intuitive: a nega- 

tive shock to a bank that lends to a large part of the net- 

work (high outdegree centrality) can be, for the aggregate 

liquidity buffer, as bad as a negative shock to a bank that 

borrows from many banks (high indegree centrality). 

However, even if we consider both borrowing and lend- 

ing amounts, it is still not enough to identify key players. 

For example, the risk contribution of Bank 5 would be un- 

derestimated. The reasons behind this can be understood 

by looking at the lower panel of Fig. 4 , where we present 

the average network structure in Period 1. The sizes of el- 

lipses identifying individual banks are (log) proportional to 

their average gross borrowing, incoming arrows to a node 

indicate borrowing flows, outgoing arrows indicate lending 

flows, and the thickness of arrows is (log) proportional to 

the sterling value. This shows that key risk contributors 

tend to be banks with high centrality (e.g., Bank 5), i.e., 

with thick and numerous links, especially links to other 

well-connected banks, but not necessarily the large play- 

ers by size. 

Fig. 5 reports excess impulse response functions (upper 

panel), average net borrowing (central panel), and network 
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Fig. 4. The period before the Northern Rock/Hedge Fund Crisis: Network excess impulse response functions to a unit shock (upper panel); average net 

borrowing per month (central panel; unit: £1); borrowing and lending flows (lower panel) where the ellipses identifying individual banks are (log) propor- 

tional to their average gross borrowing per month, incoming arrows to a node indicate borrowing flows, outgoing arrows indicate lending flows, and the 

thickness of arrows is (log) proportional to the sterling value of the flows. 

 

 

 

 

flows (lower panel) for Period 2 – the period character-

ized by a high degree of stress in the financial market. The

first thing to notice is that despite the overall increase in

borrowing and lending activities in the interbank market
847 
(reported in the Online Appendix), there is a drastic re- 

duction in the average network multiplier reported in the 

top panel: the network-induced excess reaction to a unit 

shock is only about 0.44. In a crisis period, banks seem to 
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Fig. 5. The period after the Northern Rock/Hedge Fund Crisis but before QE: Network excess impulse response functions to a unit shock (upper panel); 

average net borrowing per month (central panel; unit: £1); borrowing and lending flows (lower panel) where the ellipses identifying individual banks 

are (log) proportional to their average gross borrowing per month, incoming arrows to a node indicate borrowing flows, outgoing arrows indicate lending 

flows, and the thickness of arrows is (log) proportional to the sterling value of the flows. 

 

 

 

 

have radically adjusted their liquidity management objec-

tives, reflected by the estimate of φ, and they have done

so despite having increased the utilization of the inter-

bank network to transfer liquidity. Nevertheless, systemic
848 
risk, even though substantially reduced, is still quite high 

and driven by a couple of key players. In particular, a unit 

shock to Bank 5, Bank 9, and Bank 6 triggers an excess re- 

action of aggregate liquidity equal to 1.77, 1.36, and 0.85, 
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Fig. 6. The QE period: Network excess impulse response functions to a unit shock (upper panel); average net borrowing per month (central panel; unit: 

£1); borrowing and lending flows (lower panel) where the ellipses identifying individual banks are (log) proportional to their average gross borrowing per 

month, incoming arrows to a node indicate borrowing flows, outgoing arrows indicate lending flows, and the thickness of arrows is (log) proportional to 

the sterling value of the flows. 

 

 

 

respectively, while a shock to Bank 4 has an average effect,

and the remaining banks contribute little. 

The results for Period 3 – the one starting at the onset

of QE – are reported in Fig. 6 and are radically different
849 
from those of the previous two periods. First, banks’ liq- 

uidity holdings exhibit strategic substitution ( ̂  φ < 0 ), and 

as a result, the network buffers shocks to individual banks, 

reflected in an average excess multiplier of −0 . 15 : a unit 
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Table 2 

Bank Characteristics and Network Impulse-Respose Functions. The table 

reports the rank correlations between Network excess impulse response 

( NIRF e 
i 

) of banks and their characteristics. Periods 1, 2 and 3 correspond, 

respectively, to: before the Northern Rock/BNP Paribas Fund Crisis, after 

it but before the first BoE announcement of Asset Purchase Programme, 

and the QE period. ∗ represents 10% significance, ∗∗ 5% significance, and 
∗∗∗ 1% significance. 

Period 1 Period 2 Period 3 

Interbank Rate 20 . 91% 37 . 27% −64 . 55% 

ln Le v Pay i,t−1 82 . 73% ∗∗∗ 95 . 45% ∗∗∗ −85 . 45% ∗∗∗

rK in 
i,t−1 

20 . 00% −34 . 55% 10 . 91% 

rK out 
i,t−1 

−45 . 45% −89 . 09% ∗∗∗ 73 . 64% ∗∗

ln VolPay i,t−1 48 . 18% 56 . 36% ∗ −54 . 55% ∗

ln LU i,t−1 21 . 82% 35 . 45% −23 . 64% 

Total Assets (log) 12 . 73% 25 . 45% 4 . 55% 

Repo Liability 
Assets 

39 . 45% 48 . 18% −37 . 27% 

Deposits 
Assets 

12 . 73% −50% 68 . 18% ∗∗

CDS Spread 38 . 18% 18 . 18% −40 . 00% 

Stock Return 13 . 64% −17 . 27% −56 . 36% ∗

Total Lending and Borrowing 

(log) 

86 . 36% ∗∗∗ 95 . 45% ∗∗∗ −89 . 09% ∗∗∗

Total Lending (log) 97 . 27% ∗∗∗ 99 . 09% ∗∗∗ −89 . 09% ∗∗∗

Total Borrowing (log) 66 . 36% ∗∗ 91 . 82% ∗∗∗ −76 . 36% ∗∗∗

Net Borrowing (log) −17 . 27% 10 . 91% 54 . 55% ∗

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

shock equally spread across banks would result in a shock

of 1 − 0 . 15 = 0 . 85 to the aggregate liquidity. However, once

again, there is substantial heterogeneity among the banks

in the sense that most banks (1, 3, 7, 8, 10, and 11) con-

tribute little to shock propagation, while a few key players

(4, 5, 6, and 9) are responsible for the network buffering

effect. 

This behavior arises in a period in which the degree of

connectedness of the network was substantially reduced

(see Fig. 3 and the lower panel of Fig. 6 ), most banks

held net borrowing positions close to zero (central panel of

Fig. 6 ), and the total borrowing had been substantially re-

duced (see the Online Appendix), but at the same time, the

overall liquidity in the system had substantially increased,

which is likely due to QE ( Fig. 1 ). 

What is also interesting to notice is that the same

banks that were the riskiest players in the previous two

periods (Banks 5, 6, and 9) are now the least risky ones for

the system. Owing to their network centrality, and more

importantly, the overall strategic substitution behavior on

the network, these banks become the biggest shock ab-

sorbers. 

A natural question is whether we can explain the large

heterogeneity of individual banks’ contribution to systemic

risk using banks’ characteristics, and perhaps find some

proper indicators. Table 2 reports the rank correlations of

individual bank characteristics with banks’ network im-

pulse response functions in the subsamples. Only a few

characteristics appear to correlate significantly with the

magnitude of NIRF e 
i 

. Several observations are in order. 

For the total payments channeled by a bank, in peri-

ods 1 and 2, the rank correlations for this variable are,

respectively, 82.73% and 95.45%, while in period 3, we

have −85.45%, suggesting that banks that channel a larger
850 
amount of payments are likely to be central in the in- 

terbank credit network but that the implications of its 

centrality depend on the type of equilibrium, i.e., strat- 

egy complementarity ( φ > 0 ) or substitution ( φ < 0 ). In 

the first two periods, when φ > 0 , banks with large pay- 

ment flows contribute to the volatility of aggregate liquid- 

ity, while in the third period, when φ < 0 , they dampen 

the effect of shocks. 

The last row of Table 2 shows that net borrowing has 

no significant rank correlation with banks’ NIRF e 
i 

, consis- 

tent with Fig. 4–6 . Nevertheless, gross lending and gross 

borrowing, and their sum, are all highly correlated with 

banks’ NIRF e 
i 

. That is, banks that borrow and/or lend sub- 

stantially (in gross terms) tend to be key players in our 

network. Once again, the sign of correlation depends on 

the sign of φ: large banks, in terms of gross borrowing 

or lending, can be key risk contributors or absorbers de- 

pending on the type of equilibrium on the network. How 

to measure bank size is important. For example, size mea- 

sured by total assets is only weakly correlated with NIRF e 
i 

– instead, the total level of payment activity intermediated 

by a bank ( ln Le v Pay i ) seems to be a more salient metric 

to identify risk key players, as it strongly correlates with 

the NIRF e 
i 

. Interestingly, the rank correlations are, in ab- 

solute terms, marginally larger for total lending than for 

total borrowing, suggesting outdegree links are more im- 

portant for shock propagations. As we have shown in the 

theoretical model, outbound routes are responsible for the 

discrepancy between the planner’s solution and decentral- 

ized equilibrium outcome. Next, we use our estimates to 

quantify this discrepancy. 

6.2. Planner’s solution vs. decentralized equilibrium 

Using the estimated structural parameters, we assess 

the difference between the aggregate liquidity in the de- 

centralized equilibrium and the aggregate liquidity that a 

benevolent planner would have chosen in the payment 

system. The difference arises because the planner inter- 

nalizes the network effects of individual banks’ liquidity, 

while in the decentralized equilibrium individual banks ig- 

nore such network externalities. 

Specifically, conditional on the network structure, we 

examine how the decentralized equilibrium propagates 

shocks differently from the planner’s solution by comput- 

ing the percentage difference between V ar 
(
Z 

p 
t | G t = Ḡ 

)
, the 

volatility of aggregate liquidity from the planner’s solution, 

and V ar 
(
Z ∗t | G t = Ḡ 

)
, the volatility in decentralized equilib- 

rium, where Ḡ denote the average of G t in a subsample. 

For each subsample, we compute √ 

V ar 
(
Z p t | G t = Ḡ 

)
−
√ 

V ar 
(
Z ∗t | G t = Ḡ 

)√ 

V ar 
(
Z ∗t | G t = Ḡ 

) (37) 

where the variances are V ar 
(
Z ∗t | G t = Ḡ 

)
= 1 � M 

(
φ, ̄G 

)
�νM 

(
φ, ̄G 

)� 
1 from Eq. (30) and V ar 

(
Z 

p 
t | G t = Ḡ 

)
= (

1 
1+ φ/η

)2 

1 � M 

p 
(
φ, η, ̄G 

)
�νM 

p 
(
φ, η, ̄G 

)� 
1 from Eq. (35) . 

The variance operator is taken over the structural shocks 
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Table 3 

Planner’s Solution vs. Decentralized Equilibrium. This table reports the percentage 

difference between the volatility of aggregate liquidity of the planner’s solution and 

that of the decentralized equilibrium, conditional on the network structure. Periods 

1, 2, and 3 correspond, respectively, to: before the Northern Rock/BNP Paribas Fund 

crisis, after it but before the first BoE announcement of Asset Purchase Programme, 

and the QE period. 

γ Period 1 Period 2 Period 3 √ 
Var ( Z p t | G t = ̄G ) −

√ 
Var ( Z ∗t | G t = ̄G ) √ 

Var ( Z ∗t | G t = ̄G ) 
−89 . 6% −35 . 6% −12 . 4% 

E 

[
Z p t − Z ∗t | G t = Ḡ 

]
(unit: £billion) −0 . 36 −60 . 4 51 . 6 −100 . 0 

−0 . 30 −54 . 0 62.5 −200 . 0 

−0 . 27 −50 . 2 68.9 −300 . 0 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

νt , i.e., we condition on the parameter and the network

topology. 

We also compute the difference in the expected level of

aggregate liquidity (conditional on the network structure)

between the planner’s solution [ Eq. (21) ] and the decen-

tralized equilibrium [ Eq. (14) ]: 

cE 

[
Z p t − Z ∗t | G t = Ḡ 

]
= 1 

� 
{ 

M 

p 
(
φ, η, Ḡ 

)[ ( 1 

1 + φ/η

)
μ̄

− γ η

ψ 

′ Ḡ 

� 1 

] 
− M 

(
φ, Ḡ 

)
μ̄
} 
, (38)

where the expectation is taken over the structural shocks,

i.e., νt . 

We use the estimates of φ, �ν = diag 

({
σ 2 

i 

}N 

i =1 

)
, and μ̄,

and calculate Ḡ for each subsample. To calculate the per-

centage volatility wedge in Eq. (37) , we also need η, and,

to calculate the level difference in Eq. (38) , we need ψ 

′ , η,

and γ . By inspecting bank i ’s objective function given by

Eq. (4) , we can see that dividing Eq. (4) by ψ 

′ does not af-

fect the bank i ’s preference. Therefore, we normalize ψ 

′ to

one. While we cannot estimate η and γ directly, we cali-

brate them to natural benchmark values. 

First, we calibrate η. In our model, z i,t + η
∑ 

j � = i g i j,t z j,t 
gives the maximum amount of liquidity that bank i

can access. The component from interbank borrow-

ing, η
∑ 

j � = i g i j,t z j,t , cannot exceed the aggregate liq-

uidity 
∑ 

j � = i z j,t of i ’s neighbors, i.e., η
∑ 

j � = i g i j,t z j,t ≤∑ 

j � = i z j,t , which implies an upper bound for η:(∑ 

j � = i z j,t 
)
/ 
(∑ 

j � = i g i j,t z j,t 
)
. In our sample, this upper bound

of η varies tightly around 10 over time and across banks,

so we set η to 10. In the Online Appendix, we report our

results with η = 9 and 11. 

Next, we calibrate γ . Note that to compute the per-

centage volatility wedge in Eq. (37) , we do not need this

parameter, but we do for the level wedge in Eq. (38) .

In our third subsample period, the Bank of England sup-

plied around £125 billion of reserves through the quanti-

tative easing (QE) program, and then another £50 billion

two months later by the end of November 2010. By the

end of 2012, the total QE amount reached £375 billion.

Through the lens of our model, liquidity injection is to ad-

dress the inefficiencies in the interbank network, which

are in turn due to banks’ not internalizing their impact

on neighboring banks. Without such inefficiencies, liquid-

ity injection via QE would not be necessary, so the social

optimum should feature less liquidity than the decentral-
851 
ized outcome. Therefore, we consider three values of γ , 

−0 . 41 , −0 . 36 , and −0 . 30 , which imply respectively a level 

wedge of £−10 0 billion, £−20 0 billion, and £−300 billion 

in Period 3, i.e., different levels of liquidity required in the 

decentralized equilibrium to correct inefficiencies. 

Table 3 reports the results. In Period 1, when the net- 

work multiplier is large, the decentralized equilibrium fea- 

tures excessive risk: the planner would prefer the volatil- 

ity of aggregate liquidity to be reduced by 89.6%. More- 

over, the liquidity level in the system is also excessive. 

The wedge ranges from £50 billion to £60 billion higher 

than the planner’s solution depending on the value of γ . 

Because the planner and individual banks face the same 

{ ̄μi } N i =1 and 

{
σ 2 

i 

}N 

i =1 
, the discrepancy between the plan- 

ner’s solution and the decentralized outcome lies in the 

fact that individual banks do not internalize their impact 

on each other (via the outdegree linkages), as shown by 

Eq. (18) . 

In Period 2, the decentralized equilibrium produces less 

volatility in the aggregate liquidity than in Period 1 relative 

to the volatility from the planner’s solution. Nevertheless, 

the volatility is still too large (by 35.6%) from the planner’s 

perspective. In comparison with Period 1, the network is 

less cohesive (see Fig. 3 ), and the network multiplier de- 

clines since φ is closer to zero. However, this does not 

mean that the network externalities are eliminated. Quite 

the opposite, such externalities through the outdegree link- 

ages lead to an expected level of aggregate liquidity buffer 

that is lower than the social optimum by the amount of 

£52 to £69 billion depending on γ . That is, the crisis pe- 

riod is characterized by too much risk and too little liquid- 

ity. 

In the last period, the network multiplier is smaller 

than 1; hence, overall the decentralized equilibrium pro- 

duces a volatility of aggregate liquidity that is lower than 

a system without any network connections (i.e., a diagonal 

G ). However, given the network connections, the decen- 

tralized equilibrium still produces a volatility that is 12.4% 

higher than the volatility of aggregate liquidity in the plan- 

ner’s solution. As previously discussed, the level wedges in 

this subsample are set to calibrate γ . 

6.3. The role of the network topology 

So far our analysis on banks’ contribution to the aggre- 

gate liquidity risk assumes a unit shock to each bank. We 
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Fig. 7. The figure plots the excess network impulse response function NIRF e 
i 

(long dashed line with circle markers), defined in Eq. (31) , and its two standard 

error band (dotted lines) for the period before the Northern Rock/Hedge Fund crisis (upper panel), the period after the Northern Rock/Hedge Fund crisis 

but before QE (central panel), and the QE period (lower panel). A bank i receives a σi shock. The adjacency matrix of the interbank network is the average 

in each subsample period. In each panel, the excess network impulse response function of a uniform network is also plotted for comparison (dot-dashed 

line with cross markers). 

 

 

 

 

 

 

 

 

examine how shocks of the same size, originated in differ-

ent banks, can be propagated differently on the network.

In the following, we feed a shock of ˆ σi to bank i . By doing

so, we recognize banks differ in their contributions to the

aggregate liquidity risk because (1) their structural shocks

are of different sizes and (2) banks are located differently

on the network. 

In Fig. 7 , we plot the excess network impulse response

function, NIRF e ( ̂  φ, ˆ σi , G t ) = NIRF i ( ̂  φ, ˆ σi , G t ) − σi , defined in

i 

852 
Eq. (34) for each bank (dashed line) and the two standard 

error band (dotted lines). In each subsample period, we 

use the average G t . In the pre-crisis period (upper panel), 

banks 5, 6, and 9 contribute the most to the risk of aggre- 

gate liquidity in the payment system. As the crisis unfolds, 

the level of risk declines but these banks remain the key 

contributors (central panel). In the QE period, these banks 

become the main risk absorbers as φ turns negative and 
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Fig. 8. Attribution of the change in NIRFs across periods: the ceteris 

paribus change due to variation of G [ NIRF i ( ̂  φ1 , 1 , ̄G 2 ) − NIRF i ( ̂  φ1 , 1 , ̄G 1 ) , 

dotted line with triangle markers]; the ceteris paribus change due to 

variation of φ [ NIRF i ( ̂  φ2 , 1 , ̄G 1 ) − NIRF i ( ̂  φ1 , 1 , ̄G 1 ) , dashed line with cross 

markers]; the total change [ NIRF i ( ̂  φ2 , 1 , ̄G 2 ) − NIRF i ( ̂  φ1 , 1 , ̄G 1 ) , dashed line 

with circle markers]. Periods 1, 2, and 3 correspond, respectively, to be- 

fore the Northern Rock/BNP Paribas Fund crisis, after it but before the first 

BoE announcement of the Asset Purchase Programme, and the QE period. 

32 Recall that when G t is a right stochastic matrix, separate identifica- 

tions of the bank ( αbank ) and network ( ̄μ) fixed effects require a subset 

of banks that do not borrow at least at one point in time in each sub- 

sample (see footnote 25 and the discussion on our emprical methodology 

in the Online Appendix). This condition is not satisfied in every rolling 

window. However, since the separate identification of these fixed effects 

does not affect the identification of φ, we normalize the bank fixed effects 

to zero. Moreover, given the very short length of the rolling window, we 

drop time fixed effects from the specification and heteroskedastic spec- 

ification of shocks. Estimates with the full sets of fixed effects and het- 

eroskedasticity show a very similar behavior, but with somewhat larger 
the network becomes a risk buffer under strategic substi-

tution in banks’ liquidity decisions. 

Next, to highlight the role of the network in creating

the cross-sectional variation in banks’ risk contribution,

we compare 

{ 
NIRF e 

i 

(
ˆ φ, ˆ σi , G t 

)} N 
i =1 

with those generated

by a counterfactual network where banks are equally con-

nected, i.e., : 

U = 

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

0 

1 
N−1 

. . . 1 
N−1 

1 
N−1 

0 

. . . 
. . . 

. . . 
. . . 

. . . 1 
N−1 

1 
N−1 

. . . 1 
N−1 

0 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

, (39)

the “uniform” network. The dashed line marked by crosses

shows 

{ 
NIRF e 

i 

(
ˆ φ, ˆ σi , U 

)} N 
i =1 

. Because banks do not differ

in their position on the network, the only source of cross-

sectional difference in NIRF e 
i 

is σi , the size of bank-specific

structural shocks. In each subsample period, the counter-

factual NIRF e 
i 

exhibits a different pattern in the cross sec-

tion of banks. Therefore, given the nature of strategic in-

teractions on the network, i.e., φ, a bank’s position on the

network is an important determinant of the risk that it

contributes to the whole system. Indeed, on the real net-

work a couple of banks stand out as the main risk contrib-

utors (absorbers) when φ > 0 ( < 0 ), but on the counter-

factual network of equal connections the risk contributions

are largely flat in the cross section. 

6.4. Time-varying network effects 

The results presented so far indicate a substantial

change over time in the role played by the network inter-

actions in determining aggregate liquidity level and risk.

Specifically, the network impulse response functions de-

picted in Fig. 4–6 show substantial time variation across

periods. This could be caused by either the time variation

in the network topology G or in the network multiplier

φ. To examine the relative contributions, we compute the

changes in the network impulse response functions across

the three periods. 

In particular, Panel A of Fig. 8 reports the change

in NIRFs between Periods 1 and 2 due to the varia-

tion of G [ NIRF i ( ̂  φ1 , 1 , ̄G 2 ) − NIRF i ( ̂  φ1 , 1 , ̄G 1 ) , dotted line

with triangles], and the change due to the variation

of φ [ NIRF i ( ̂  φ2 , 1 , ̄G 1 ) − NIRF i ( ̂  φ1 , 1 , ̄G 1 ) , dash-dotted line

with + ]. Note that the total change is not the sum of the

ceteris paribus change due to variation in G and the ceteris

paribus change due to variation in φ, but as a point of ref-

erence the total change is also plotted [ NIRF i ( ̂  φ2 , 1 , ̄G 2 ) −
NIRF i ( ̂  φ1 , 1 , ̄G 1 ) , dashed line with circles]. 

A striking feature of the graph is that most of the to-

tal change comes from the reduction in the network mul-

tiplier φ for all banks. In fact, ceteris paribus, the NIRF of

Bank 5 would have increased from Period 1 to 2 because

of the change in G . However, this effect is dwarfed by the

reduction of its NIRF caused by the change in φ. 

Panel B reports the same decomposition of the change

in NIRFs between Periods 2 and 3. Once again the changes
853 
are mostly driven by the change in the network multi- 

plier rather than the change in network topology. Overall, 

Fig. 8 shows that the time variation of the network multi- 

plier, i.e., the type of equilibrium on the network (strategic 

complementarity vs. substitution), has a first-order effect 

on the network amplification mechanism. 

The results in Fig. 8 indicate the importance of varia- 

tion of φ in determining the network effects. To capture 

this time variation, we also estimate the structural model 

in Eqs. (22) and (23) using a 6-month rolling window. 32 
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Fig. 9. Spatial error (solid line) and Durbin (dashed line) models: Rolling estimates of φ with a 6-month window. SEM (spatial error model) corresponds 

to the baseline specification in Eqs. (22) and (23) . Its 95% confidence intervals are marked by the dotted lines. SDM (spatial Durbin model) corresponds to 

the specification in Eq. (36) . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

These rolling estimates of the network coefficient φ are

reported (solid line), together with 95% confidence bands

(dotted lines), in Fig. 9 . The figure also depicts the rolling

point estimates of the coefficient φ implied by the spatial

Durbin model (dashed line) in Eq. (36) which, as a more

general empirical formulation, serves as a specification test

of our benchmark spatial error model. If the two estimated

φ are close to each other, as shown in Fig. 9 , this indi-

cates that our theory-driven spatial error specification of

the interbank network cannot be rejected in favour of a

more general specification. 33 Specifically, we find that, at

the 5% confidence level, two estimates are statistically dif-

ferent less than 95% of the time. 

At the beginning of the sample, the estimate of φ im-

plies an extremely large network multiplier, and thus, the

interbank system is a powerful shock amplifier. According

to our model, this reflects that the forces behind strate-

gic complementarity, i.e., the high values of payment mul-

tiplier and velocity, dominate the force of strategic substi-

tution. The estimate has its first sharp reduction around

the 18th of May 2006 when the Bank of England intro-

duced the reserve averaging system (see details in the On-

line Appendix). The network multiplier is relatively stable

after that except for a temporary decrease during the 2007

subprime mortgage default, until the Northern Rock bank

run when the network multiplier is drastically reduced for

several months. After this reduction, the coefficient goes
confidence intervals, owing to the increase in the number of parameters. 

We focus on the more parsimonious specification, but the results of the 

full specifications are available upon request. 
33 The likelihood ratio test cannot reject the spatial error model in most 

parts of our sample (i.e., except rolling windows ending from May 2009 

to May 2010). Results are available upon request. 

854 
back to roughly the previous average level but exhibits a 

declining trend that culminates in a slump following the 

Bear Stearns collapse. From this period onward, and until 

long after the Lehman Brothers bankruptcy, the coefficient 

is statistically indistinguishable from zero. 

Our estimation suggests that banks’ liquidity manage- 

ment objectives change in response to market-wide crisis 

in a way that reduces the domino effect of shock propaga- 

tion and amplification on the interbank network. Interest- 

ingly, the coefficient ˆ φ becomes negative right before the 

announcement of the Asset Purchase Programme and re- 

mains negative throughout the QE period. This result indi- 

cates that during the active liquidity injection by the Bank 

of England (and also in expectation of it), banks’ liquid- 

ity holding decisions exhibit strategic substitution. The sign 

of φ depends on the relative strength of strategic comple- 

mentarity and substitution forces, while its magnitude de- 

pends on the overall accessibility of interbank credit [cap- 

tured by η in Eq. (10) ]. The downward trend of magnitude 

during the crisis can be attributed to the stress in the in- 

terbank credit market, while the increase in absolute mag- 

nitude post-QE suggests that the policy intervention allevi- 

ated such stress and partly restored interbank credit. 

Our results are unlikely to be driven by the direct or 

mechanical impact of QE on the interbank market of re- 

serves for the following reasons: a ) our estimation con- 

trols for variation in many prices (e.g., interbank rates), 

quantities (e.g., payment patterns, repo, deposits), and time 

(weekly) fixed effects, so our estimated response functions 

of individual banks are already conditional on such infor- 

mation; b) as shown in Fig. 1 , overall, banks hold more 

liquidity after QE, which favors strategic complementarity 

(i.e., correlated liquidity holdings) instead of strategic sub- 

stitution; c) the drop in φ actually occurred before the an- 
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Fig. 10. Rolling estimate of φ (solid line, measured on left axis) using the specification in Eqs. (22) and (23) and 6-month window, and payment system 

velocity (dashed line, measured on right axis). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

nouncement of QE; and d) as previously emphasized, the

Bank of England followed an accommodative reserve sup-

ply policy throughout our sample period, so the impact of

QE is not through the alleviation of reserve scarcity. There-

fore, our finding of a strong QE impact on banks’ liquid-

ity management objectives (i.e., our structural parameters)

posits a challenge for theoretical research on how mone-

tary policy affects the banking system. 

The role of payment system velocity. Next we explore

the economic forces driving the dynamics of φ shown in

Fig. 9 . Defined in Eq. (10) , φ depends on two opposing

forces, δ, which leads to strategic complementarity, and ψ ,

which generates strategic substitution. 

As shown in its definition, Eq. (6) , δ increases in δS

and κb . The payment multiplier δS measures the strength

of complementarity in the economic activities underly-

ing agents’ payments. It potentially depends on a great

number of factors, for example, the input-output linkages

in the production sector (see Carvalho and Tahbaz-Salehi,

2019 ). 

Next, we focus on the payment velocity, κb , which has

a sharp interpretation and is directly measurable in our

sample: the ratio of total payments to total liquidity [see

Eq. (3) ]. Fig. 10 plots the 6-month rolling estimate of φ
(spatial error model) together with the 6-month rolling av-

erage of payment system velocity (dashed line). The left

Y-axis is for φ and the right Y-axis is for the velocity. A

velocity that is equal to ten means that the liquidity in

the payment system churns ten times as agents make pay-

ments to each other. The estimate of φ and the velocity

have a correlation of 89.12%. Through δ, the payment sys-

tem velocity drives the low-frequency movements of φ.

As shown in our model, a high velocity leads to stronger

strategic complementarity (i.e., a high δ, and thereby, high

φ). Given a high velocity, a bank can support a large vol-

ume of depositors’ payments by borrowing a small amount
855 
of liquidity from its neighboring banks. Through the com- 

plementarity among depositors, these payments in turn in- 

crease the overall demand for the bank’s payment services, 

thus raising the marginal profits from holding its own liq- 

uidity to support payments. 

In sum, our theoretical model not only guides our es- 

timation of the net effects of strategic interactions, i.e., φ, 

among banks on the network. It also allows us to relate 

the estimate of φ to the underlying economic forces, and 

in particular, the velocity of the payment system, i.e., how 

fast the liquidity provided by banks circulates among de- 

positors through payment activities. The strategic interac- 

tions among banks are not only functions of the character- 

istics of the banking system, but also critically depend on 

how banks’ clients behave. As shown in Fig. 10 , the unfold- 

ing of the financial crisis was accompanied by a decline of 

payment velocity, which explains the decline of φ – when 

the payment system could not churn liquidity as fast as 

before, the strategic complementarity in banks’ decision to 

hold reserves weakened. 

7. Conclusion 

We develop a network model of banks’ liquidity holding 

decisions and estimate the model to uncover the structural 

parameters that determine the type of equilibrium on the 

interbank network, i.e., strategic complementarity or sub- 

stitution. Using the estimated parameters and the observed 

network topology, we construct measures of systemic risk. 

We find that the network topology is a main driver of the 

cross-sectional variation in banks’ contribution to systemic 

risks. We propose empirical metrics to identify the banks 

that contribute the most to the systemic liquidity risk in 

the payment system. 

We find that the network effects vary significantly 

through the sample period of 2006 to 2010. In the pre- 
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crisis period, banks’ liquidity holding decisions exhibited

strategic complementarity, so shocks were amplified by the

network. In contrast, during the crisis, the network multi-

plier declined significantly, suggesting that banks adjusted

their liquidity management objectives in a way that re-

duced network domino effects. Finally, during the QE pe-

riod, in response to the large liquidity injection, the equi-

librium on the interbank network was characterized by

strategic substitution, and accordingly, the network be-

came a shock buffer. 

To the best of our knowledge, we are the first to pro-

vide evidence on the substantial time variation in the na-

ture of equilibrium on a financial network. Moreover, we

show that, from a systemic risk perspective, the change

in the type of equilibrium is the dominant force (rather

than the change in network topology). This observation

could rationalize the empirical puzzle of network topology

changes having little impact on aggregate quantities in the

calibration/simulation studies on interbank networks (e.g.,

Elsinger et al., 2006 ). 

From a policy perspective, we are able to identify key

risk contributors using our estimates of structural param-

eters and show that a subset of players are responsible

for most of the systemic risk generated through network

connections. Finally, we solve the choice of a benevolent

planner and quantify the discrepancy between the plan-

ner’s solution and the decentralized outcome in both the

expected level and the volatility of aggregate liquidity. In

particular, we find that during both the pre-crisis and the

20 07–20 09 crisis periods, the system was characterized

by excessive risk, and during the crisis, too little liquidity

buffer was held by individual banks relative to the social

optimum. 

Appendix A. Model Discussion and Additional 

Theoretical Results 

A1. Depositors’ payment demand 

In the payment system, each bank serves a unit mass of

depositors in a region which, for example, can be defined

geographically by a bank’s branch locations. We model the

depositors’ demand for payment services. Let d i,t denote

a representative depositor’s demand for payment services,

and D i,t denote the aggregate demand in region i . A repre-

sentative depositor solves the following problem: 

max 
d i,t 

F ( D i,t d i,t ) − d i,t P i,t , (A.1)

where F ( ·) is an increasing function. The complementar-

ity between aggregate and individual payments, i.e., the

product of D i,t and d i,t in F ( ·) , captures a payment mul-

tiplier. Payments beget payments: when depositors make

more payments, they trigger more economic activities and

the new activities require more payments. This effect

may work through the production input-output linkages

( Carvalho and Tahbaz-Salehi, 2019 ). When downstream

customers pay upstream suppliers for their products, up-

stream suppliers may in turn pay their own suppliers along

the logistic chains. Another mechanism is that receiving

payments relaxes agents’ liquidity constraints and allows
856 
them to pay others ( Shin, 2019 ). Such a feedback effect 

from aggregate activities to individual agents is also a key 

ingredient in models of economic growth (e.g., Frankel, 

1962; Lucas, 1988; Romer, 1986 ). 

The cost of payment services is P i , which can be in- 

terpreted as a reduction in the deposit rate, for example, 

as depositors have to accept low interest rates on check- 

ing accounts for payment convenience. We do not model 

depositors’ switching to different banks for cheaper pay- 

ment services. In our empirical implementation, one pe- 

riod is one day, so the assumption is that depositors do not 

switch between banks intraday. Moreover, banks typically 

have deposit market power and a sticky customer base, 

which is well documented in the literature [e.g., ( Drechsler 

et al., 2017; Wang et al., 2019 )]. 

A representative depositor’s first-order condition is 

F ′ ( D i,t d i,t ) D i,t = P i,t . (A.2) 

Substituting the equilibrium condition, D i,t = d i,t , i.e., the 

aggregate demand for payment services from a unit mass 

of depositors is equal to the individual demand, we have 

the aggregate demand for payment services: 

P i,t = F ′ 
(
D 

2 
i,t 

)
D i,t ≡ P ( D i,t ) . (A.3) 

Given the payment service market-clearing condition, 

D i,t = S i,t , (A.4) 

bank i ’s revenues at t from supplying payment services are 

given by 

 ( S i,t ) ≡ P ( D i,t ) D i,t = P ( S i,t ) S i,t = F ′ 
(
S 2 i,t 

)
S 2 i,t , (A.5) 

where the payment service demand curve, P 
(
D i,t 

)
= 

F ′ 
(
D 

2 
i,t 

)
D i,t , is given by Eq. (A.3) . In the main text, we 

linearize the marginal revenues, i.e., F ′ 
(
S 2 

i,t 

)
= δS / 2 . When 

F ( ·) is linear, the aggregate demand for payment services 

is upward-sloping (at least locally around the linearisation 

point), as shown by Eq. (A.3) , which suggests that the pos- 

itive feedback effect from the aggregate payment activities 

to individuals’ payment activities is strong. 

A2. A more general model 

In this section, we present a more general model. In our 

main model, when bank i exhausts its reserves through 

payment outflows, it can only borrow from bank j’s re- 

serves that are committed to the payment system, i.e., 

z j,t . In the following, we allow bank j’s total liquidity to 

be accessible via the network. As a reminder, the total 

liquidity is l j,t = q j,t + z j,t , where q j,t = α j + 

∑ M 

m =1 βm 

x m 

j,t 
+ ∑ P 

p=1 βp x 
p 
t is bank j’s liquidity held for its own intraday 

transactions. Let ρ ∈ [ 0 , 1 ] denote the fraction of q j,t that 

bank j is willing to lend out. When ρ is restricted to zero, 

the model is reduced to the main model. 

Bank i ’s supply of payment services is given by 

S i,t = κb 

[ 

z i,t + η
∑ 

j � = i 

(
z j,t + ρq j,t 

)] 

. (A.6) 

Given the same demand for payment services as before, we 

obtain bank i ’s revenues, 

 ( S i,t ) ≡ F ′ 
(
S 2 i,t 

)
S 2 i,t . (A.7) 



E. Denbee, C. Julliard, Y. Li et al. Journal of Financial Economics 141 (2021) 831–859 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

34 In this case, l ∗ should replace z ∗ in Eq. (A.23) . 
As in Eq. (4) of the main model, the cost of liquidity is now

parameterized as 

γ

[ 

z i,t + η
∑ 

j � = i 
g i j,t 

(
z j,t + ρq j,t 

)] 

+ 

ψ 

2 

[ 

z i,t + η
∑ 

j � = i 
g i j,t 

(
z j,t + ρq j,t 

)] 2 

+ 

˜ μi,t γ
′ z i,t + 

ψ 

′ 
2 

z 2 i,t , (A.8)

where z j,t is now replaced by z j,t + ρq j,t . As in the main

model, we linearize the system by considering a constant

F ′ 
(
S 2 

i,t 

)
≡ δS / 2 , and define δ ≡ δS κb . The first-order condi-

tion for z i,t is given by 

δ

[ 

z i,t + η
∑ 

j � = i 
g i j,t 

(
z j,t + ρq j,t 

)] 

= γ + ψ 

[ 

z i,t + η
∑ 

j � = i 
g i j,t 

(
z j,t + ρq j,t 

)] 

+ 

˜ μi,t γ
′ + ψ 

′ z i,t . (A.9)

The same condition given by Eq. (7) applies for the unique-

ness of the optimal solution. 

Bank i ’s optimal choice of z i,t is given by 

z ∗i,t = φ
∑ 

j � = i 
g i j,t 

(
z j,t + ρq j,t 

)
+ μi,t , (A.10)

where, as in the main model, we define 

φ ≡
(

δ − ψ 

ψ 

′ − ( δ − ψ ) 

)
η (A.11)

and 

μi,t ≡
(
−˜ μi,t γ

′ − γ
)

ψ 

′ − ( δ − ψ ) 
= μ̄i + νi,t , (A.12)

where νi,t has a normal distribution N 

(
0 , σ 2 

i 

)
, indepen-

dent over i and t . The equilibrium, 
{

z ∗
i,t 

}N 

i =1 
, solves the sys-

tem of linear equations: i = 1 , . . . , N, 

z ∗i,t = φ
∑ 

j � = i 
g i j,t 

(
z ∗j,t + ρq j,t 

)
+ μi,t . (A.13)

In Eq. (A.10) , we can replace z ∗
i,t 

and z ∗
j,t 

by l i,t − q i,t and

l j,t − q j,t respectively to obtain 

l i,t − q i,t = φ
∑ 

j � = i 
g i j,t l j,t − φ( 1 − ρ) 

∑ 

j � = i 
g i j,t q j,t + μi,t . 

(A.14)

Rearranging the equation, we have 

l i,t = φ
∑ 

j � = i 
g i j,t l j,t + μ̆t , (A.15)

where we define 

μ̆t ≡ q i,t − φ( 1 − ρ) 
∑ 

j � = i 
g i j,t q j,t + μi,t 
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= αi + 

M ∑ 

m =1 

βm 

x m 

i,t + 

P ∑ 

p=1 

βp x 
p 
t − φ( 1 − ρ) 

×
∑ 

j � = i 
g i j,t 

( 

α j + 

M ∑ 

m =1 

βm 

x m 

j,t + 

P ∑ 

p=1 

βp x 
p 
t 

) 

+ μi,t . 

(A.16) 

Note that αi and μ̄i cannot be separately identified, so we 

drop the bank fixed effects: 

μ̆t = 

M ∑ 

m =1 

βm 

x m 

i,t + 

P ∑ 

p=1 

βp x 
p 
t − φ( 1 − ρ) 

×
∑ 

j � = i 
g i j,t 

( 

M ∑ 

m =1 

βm 

x m 

j,t + 

P ∑ 

p=1 

βp x 
p 
t 

) 

+ μi,t . (A.17) 

Note that because 
∑ 

j � = i g i j,t = 1 , the expression of μ̆t can 

be simplified: 

μ̆t = 

M ∑ 

m =1 

βm 

x m 

i,t + 

P ∑ 

p=1 

χp x 
p 
t − φ( 1 − ρ) 

∑ 

j � = i 
g i j,t 

M ∑ 

m =1 

βm 

x m 

j,t + μi,t , 

(A.18) 

where χp ≡ [ 1 − φ( 1 − ρ) ] βp . Then for m = 1 , . . . , M + n , 

we define θm 

≡ −φ( 1 − ρ) βm 

, and further simplify the ex- 

pression of μ̆t : 

μ̆t = 

M ∑ 

m =1 

βm 

x m 

i,t + 

P ∑ 

p=1 

χp x 
p 
t + 

∑ 

j � = i 
g i j,t 

M ∑ 

m =1 

θm 

x m 

j,t + μi,t . 

(A.19) 

Once we impose the restriction ρ = 0 , we are back 

to the main model. Therefore, estimating this more gen- 

eral formulation serves as a specification test of the main 

model. The following result is immediate following the 

same steps as in the proof of Proposition 1 in the main 

text. 

Proposition 3 . Suppose that | φ| < 1 . Then, there is a unique 

interior solution for the equilibrium outcome given by 

l ∗i,t ( φ, G t ) = { M ( φ, G t ) } i. ̆μt , (A.20) 

where { } i. is the operator that returns the i th row of its argu- 

ment, μ̆t ≡
[
μ̆1 ,t , . . . , μ̆N,t 

]� 
, and 

M ( φ, G t ) ≡ I + φG t + φ2 G 

2 
t + φ3 G 

3 
t + . . . 

= 

∞ ∑ 

k =0 

φk G 

k 
t = ( I − φG t ) 

−1 
, (A.21) 

where I is the N × N identity matrix. 

The above result implies that, even in this more general 

model, the definitions of conditional volatility of liquidity, 

risk key player, and level key player, as well as their depen- 

dency on the network topology and equilibrium parameter 

φ, stay unchanged. 34 
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In our empirical implementation we can write the ob-

served total reserve holdings, for i = 1 , . . . , N, t = 1 , . . . , T ,

as 

l i,t = φ
∑ 

j � = i 
g i j,t l j,t + 

M ∑ 

m =1 

βm 

x m 

i,t + 

P ∑ 

p=1 

χp x 
p 
t 

+ 

∑ 

j � = i 
g i j,t 

M ∑ 

m =1 

θm 

x m 

j,t + μ̄t + νi,t . (A.22)

This empirical counterpart of the more general model is a

spatial Durbin model, i.e., Eq. (36) in the main text. The

network effect on banks’ liquidity holding decisions is no

longer confined in the residual term, z i,t , but rather on the

total level of liquidity. 

A3. Level key player 

Similar to the risk key player, we can identify the “sys-

temic level key player”, whose removal from the system

causes the largest aggregate liquidity reduction in expecta-

tion. 35 

Definition 3 (Level key player). The level key player τ ∗
t is

the player that, when removed, causes the maximum ex-

pected reduction in the overall level of total liquidity. We

use G \ τ,t to denote the new adjacency matrix obtained by

setting to zero all of G t ’s τ th row and column coefficients.

The resulting network is g \ τ,t . The level key player τ ∗
t is

found by solving 

τ ∗
t = arg max 

τ=1 , ... ,N 

E 

[ ∑ 

i 

z ∗i (φ, g t ) −
∑ 

i � = τ
z ∗(φ, g \ τ,t ) 

∣∣∣∣∣g t , τ
] 

, 

(A.23)

where E is the expectation operator. 

We define the level key player under the assumption

that the removal of banks does not trigger immediately the

formation of new links. Hence, we capture the short-run

effects of a bank’s sudden failure. Since we do not observe

bank failure in our sample, we cannot provide a precise

time frame for link formation after removal. However, our

definition can be operational from a policy perspective, es-

pecially during a crisis when banks shun each other and

link formation becomes less likely. Using Proposition 1 , we

have the following corollary. 

Corollary 1 . A player τ ∗
t is the level key player that solves Eq.

(A.23) if and only if 

τ ∗
t = arg max 

τ=1 , ... ,N 

{ M (φ, G t ) } τ. μ̄︸ ︷︷ ︸ 
Indegree effect 

+ 1 

� { M ( φ, G t ) } .τ μ̄τ︸ ︷︷ ︸ 
Outdegree effect 

− m ττ (φ, G t ) ̄μτ︸ ︷︷ ︸ 
Double count correction 

, (A.24)
35 This definition is in the same spirit as the concept of key player in the 

crime network literature, e.g., Ballester et al. (2006) , where targeting key 

players is important for crime reduction. Here, it is useful to consider the 

ripple effect on the aggregate liquidity when a bank fails and exits from 

the system. Injecting liquidity to the key level players might be necessary 

to avoid major disruptions to the whole system. 
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where m ττ (φ, G t ) is the τ th element of the diagonal of 

M ( φ, G t ) . 

When bank τ is removed, its liquidity disappears from 

the system. This is the first component, the indegree ef- 

fect, which depends on neighbors’ μ̄ through { M (φ, G t ) } τ. , 

the routes from neighbors to τ . The second component re- 

flects bank τ ’s impact on other banks, so its own μ̄τ is 

multiplied by the sum of the routes from τ to neighbors, 

i.e., 1 � { M (φ, G t ) } τ. . This outdegree effect captures the net- 

work externality. The level key player metric is particularly 

relevant for a central planner who decides on which bank 

to help to sustain the aggregate liquidity buffer. Such a 

decision depends on a bank’s own contribution to aggre- 

gate liquidity and the spillover effects through the network 

linkages. As in the risk key player metric, focusing on the 

network alone is not enough. Both the attenuation factor 

φ and bank-specific characteristics, now captured by μ̄, are 

important inputs in computing key players. 
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