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Abstract

Under financing frictions, negative shocks have a lasting impact on credit intermediaries’ net

worth and lending capacity. Anticipating tighter credit-supply conditions and the resulting dif-

ficulty in financing ongoing capital growth, firms’ current incentives to borrow and create pro-

ductive capital weaken. Such credit-demand contraction reduces intermediaries’ profitability,

delays their rebuilding of net worth, and traps the economy in downturns. This paper develops a

model of credit cycles featuring seemingly stable booms, persistent crises, and transitions driven

by intermediaries’ state-dependent leverage choices. Unlike in the fire-sale frameworks (e.g.,

Kiyotaki and Moore, 1997), credit is not tied to secondary-market prices of collateral assets.

*I am grateful to Philip Bond, editor at the Journal of Finance, the anonymous Associate Editor, two anonymous
referees for helpful comments. I am indebted to my advisors—Patrick Bolton, Tano Santos, and José A. Scheinkman—
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1 Introduction

Financial crises are marked by net worth destruction, the tightening of borrowing constraints, and

ensuing credit crunches (e.g., Bernanke, Gertler, and Gilchrist (1999)). Following Kiyotaki and

Moore (1997) (hereafter KM), models of credit cycles and financial crises often rely on asset fire

sale as a shock amplification mechanism (Shleifer and Vishny, 2011). Before the Global Financial

Crisis (GFC), the focus was on borrowers’ net-worth losses. After the GFC, fire-sale mechanisms

have applied to amplify the impact of shocks on net worth of intermediaries that supply credit.

Kocherlakota (2000) pointed out that in KM’s deterministic environment, the one-time shock

cannot cause a severe asset fire sale and large crisis, as the economy is known to recover.1 A new

generation of models address this issue by analyzing stochastic environments with recurrent shocks

that allows risk premia to play a critical role: after negative shocks, risk premia rise, causing asset

prices to slump (e.g., He and Krishnamurthy (2013), Brunnermeier and Sannikov (2014)).

A conflict emerges between crisis severity and duration in these models of intermediation cy-

cles: higher risk premia in crises raise expected asset returns, accelerating net worth recovery—that

is, investment opportunities improve in crises (see also Gersbach, Rochet, and Scheffel (2023)).

Modeling credit crunches via fire sale also faces an empirical challenge. Credit is tied to the market

prices of collateral assets. The mechanism’s empirical relevance depends on the prevalence of debt

backed by marketable assets, which constitutes about 20% of firms’ debts (Lian and Ma, 2020).2

This paper develops a model of credit intermediation cycles without fire sales. Crisis severity

and duration reinforce one another, as investment opportunities deteriorate rather than improve for

financial intermediaries in crises. Recovery is fragile and prone to double-dip recessions. Beyond

characterizing crises, the fully stochastic environment allows for a complete analysis of boom-bust

cycles and endogenous transition across cycle stages. These equilibrium features are analytically

characterized—unlike much of the macro-finance literature that depends on numerical solutions.

In the following, the model is presented in three steps: first, crisis dynamics are characterized;

next, transition from crisis to boom is examined; and finally, properties of the boom are discussed.

1Given that asset prices rise back for sure, it takes a small drop in asset prices to make the assets attractive to hold.
2Related, Benmelech, Kumar, and Rajan (2024) find a secular decline in the U.S. firms’ reliance on secured debt.
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Firms rely on credit supplied by financial intermediaries to fund the creation and growth of

productive capital. In line with evidence (e.g., Baron, Verner, and Xiong (2021)), intermediaries’

equity plays a pivotal role, acting as the state variable. When negative shocks erode their equity,

intermediaries’ balance-sheet capacity shrinks because they cannot recapitalize frictionlessly. As

a result, credit supply contracts. What happens next to credit demand is critical: anticipating the

shocks’ impact to be persistent, firms’ demand for credit declines. The reason is that because firms

expect future credit availability to worsen and capital to grow slowly as a result, firms’ current

incentive to build capital weakens. Thus, intermediaries’ investment opportunities (i.e., firms’

credit demand) deteriorate in crises. This is opposite to models of financial intermediation where

intermediaries’ investment opportunities improve when intermediaries become undercapitalized.

The forward-looking credit demand is realistic. In practice, when deciding whether to initiate

projects, firms consider future growth opportunities, the associated financing needs, and credit

availability. If they anticipate abundant future credit and faster capital growth, firms want to build

capital now and increase their current demand for credit. Conversely, expectations of future credit

contraction and slower growth weaken their current incentive to build capital and credit demand.

The other key model ingredient is that intermediaries face equity issuance costs and opti-

mally raise equity only when they are severely undercapitalized. Except when the economy is at

the lower (optimal issuance) boundary of intermediaries’ equity, intermediaries do not recapitalize

immediately following negative shocks, which is the reason why the shocks’ impact persists.

Crises originate on the credit-supply side: because intermediaries cannot be frictionlessly

recapitalized, negative shocks reduce their current equity and shift downward its future trajectory

through the persistent impact. Credit demand contracts in response, reducing intermediaries’ prof-

itability and slowing their equity rebuild.3 Firms’ concern over future credit availability for capital

growth links the trajectory of intermediaries’ equity and their current lending opportunities.4 The

3Even though the equilibrium loan rate rises in crises as undercapitalized intermediaries demand a higher risk
premium, credit-demand contraction (i.e., an inward shift of demand curve) leads to a significant decline in the equi-
librium quantity of credit, hurting intermediaries’ lending profits that depend on both the price and quantity of credit.

4The persistence of shock impact under financial constraints has been well established, first for nonfinancial firms
(Bernanke, Gertler, and Gilchrist, 1999) and later for banks and other financial intermediaries (Brunnermeier and
Sannikov, 2016a). The innovation in my model is to link the persistent impact of shocks on intermediary equity (the
credit-supply side) to the endogenous variation of credit demand (i.e., the intermediaries’ investment opportunities).
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severity and duration of crises are mutually reinforcing.5 On the one hand (from crisis severity to

duration), a crisis is more persistent when credit-demand contraction is more severe, implying slug-

gish rebuild of intermediaries’ equity. On the other hand (from crisis duration to severity), when

anticipating a persistently low level of intermediary equity, credit tightening, and the slowdown of

capital growth, firms want to create less capital now, so their credit needs weaken, resulting in a low

equilibrium level of credit and growth. In the model, credit-demand contraction during downturns

is driven not by sentiment but by rational expectations of persistent credit-supply tightening.

Intermediaries’ equity or “net worth” is the state variable. Intermediaries’ choice of leverage

determines its shock sensitivity. Therefore, characterizing intermediary leverage is essential for

analyzing the equilibrium dynamics. The model has a mechanism through which intermediaries’

leverage choice prolongs crises. Following negative shocks, the deterioration of lending oppor-

tunities triggers intermediaries’ deleveraging. Reducing shock exposure seems beneficial, but the

low leverage primarily dampens positive shocks rather than negative ones. When intermediaries’

equity is already low in crises, more negative shocks eventually trigger equity issuance. As a

reminder, intermediaries face issuance costs but optimally raise equity when they are severely un-

dercapitalized (when the marginal value of equity is high). Issuance limits the impact of negative

shocks as equity cannot fall below the issuance threshold. Thus, the shock dampening effect of low

leverage in crises mainly applies to positive shocks that could help rebuild intermediary equity.

Intermediaries’ leverage choice renders recovery from crises not only sluggish but fragile.

As intermediaries rebuild equity, firms foresee credit-supply expansion and faster capital growth,

which boosts their incentives to create capital now and stimulates credit demand. Improved lending

opportunities induce intermediaries to lever up. Since their’ equity has risen and is no longer close

to the level that triggers issuance, the impact of negative shocks is not as limited by prospective

equity raising as it is at the depth of crises. Thus, as leverage builds up along the recovery path,

negative shocks can quickly erode intermediaries’ equity, resulting in a double-dip recession.

Next, consider the transition into a boom. In the absence of consecutive negative shocks,

intermediaries rebuild equity along the recovery path, and the equilibrium level of credit provision

5Shock amplification and the persistence of shocks’ impact are two key themes in the literature on economic
fluctuations. Brunnermeier, Eisenbach, and Sannikov (2013) provide a comprehensive survey.
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increases, allowing firms to create and grow capital at a faster rate. Intermediaries’ leverage also

rises as previously noted, and it will continue rising until firms reach their borrowing limit—

that is, until the level of intermediaries’ equity and associated credit provision are so high that

firms have pledged all future cash flows to borrow from intermediaries. Beyond this point, further

increases in intermediary equity can no longer trigger rapid expansion of firms’ credit demand,

and intermediary leverage turns countercyclical: any further increase in intermediaries’ equity now

reduces leverage, because as the asset side of intermediaries’ balance sheets (lending) no longer

expands as fast, additional equity on the liability side replaces debt, lowering leverage.

In summary, intermediary leverage exhibits hump-shaped dynamics. When intermediary

equity—the state variable—is low, leverage rises as equity increases, showing procyclicality. The

driving force is the positive feedback from a higher intermediary equity (and anticipated future

credit-supply expansion) to a stronger credit demand. Capital is both productive and carries growth

options, so the demand for credit that finances capital creation is driven by expectations of future

credit-supply conditions that affect capital growth. This is about how much firms want to borrow.

When intermediary equity is sufficiently high, what constrains the equilibrium level of credit pro-

vision is no longer the inelastic supply but firms’ borrowing capacity (pledgeable value). This is

about how much firms can borrow. In this region, intermediary leverage is countercyclical.

Intermediary leverage dynamics are important for understanding the credit cycle. The hump-

shaped pattern implies that the economy is insensitive to shocks (intermediary leverage is low) both

when intermediary equity is low (crises) and when it is high (booms). The economy tends to be

trapped in the two extremes—that is, the stationary distribution of the state variable is bimodal. In

the region with intermediate levels of intermediary equity, the system spends relatively less time as

it’s shock-sensitive (intermediary leverage is high). Thus, despite evolving along continuous paths

(shocks are Brownian), the economy displays two endogenous regimes. These results speak to the

findings on the multimodality of financial conditions (Adrian, Boyarchenko, and Giannone, 2021).

It is worth noting that intermediaries in the model represent both banks and non-bank lenders

that employ leverage and face frictions when raising equity capital. In practice, the key differences

between banks and non-bank lenders often stem from their regulatory environments and from their
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investment and funding clienteles. In the model’s laissez-faire setting, however, these intermedi-

aries do not face regulations. Moreover, the characteristics of credit demand in the model are not

unique to any particular sector of the economy or to borrowers with specific risk profiles.

Finally, the model offers new perspectives on credit policies. It has become increasingly

common for governments to lend directly to firms in crises, surpassing financial intermediaries.6

However, such policy cannot significantly increase the equilibrium level of credit provision, if

credit demand is weak. Unless the government replaces intermediaries entirely, the marginal sup-

ply of credit still come from intermediaries. Consequently, firms’ expectations of capital growth

and current incentives to borrow and invest remain tied to the trajectory of intermediary equity.

The model shows that policy intervention prolongs crises by further eroding intermediaries’ lend-

ing opportunities. If part of credit demand is met by the government, intermediaries earn profits

only on the residual demand, so their equity rebuild is slower than the laissez-faire case.

Government intervention renders the recovery sluggish also through its impact on interme-

diary leverage. As noted earlier, deleveraging slows down recovery. By reducing intermediaries’

lending opportunities, policy intervention strengthens intermediaries’ incentive to deleverage.

Government intervention also makes recovery more fragile by amplifying the procyclicality

of intermediary leverage in the low-equity region. Intermediaries maintain sufficient profits over

credit cycles to cover the occasionally incurred equity issuance costs. To do so, they raise lever-

age in good times—when government intervention is absent and lending opportunities are more

abundant—and reduce leverage in bad times when intervention erodes lending profits. This re-

sponse to intervention leads to more pronounced leverage procyclicality. Consequently, along the

recovery path, intermediaries’ leverage rises more sharply. When magnified by a higher leverage,

negative shocks can erode intermediaries’ equity quickly and push the economy back into crises.

Literature. This paper contributes to the literature on financial accelerators (e.g., Bernanke and

Gertler (1989); Carlstrom and Fuerst (1997); Kiyotaki and Moore (1997); Bernanke, Gertler, and

Gilchrist (1999); Jermann and Quadrini (2012)). After the GFC, attention has shifted from produc-

6Examples include the Primary and Secondary Market Corporate Credit Facilities that were introduced in the U.S.
during the Covid-19 pandemic, and corporate bond purchases at the Bank of Japan and European Central Bank.
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ers’ net-worth destruction to the vulnerabilities of financial intermediaries. In models of financial

crises, fire sales and volatile asset prices serve as the primary shock-amplification mechanisms.7

This modeling approach lays the foundation for a broad literature on financial regulations and

crisis-intervention policies.8 In the opening section of this article, I explain the theoretical and em-

pirical challenges confronting the fire-sale approach, particularly in its application to credit cycles.

This paper provides a model of financial intermediation cycles without fire sales. Rampini

and Viswanathan (2019) (hereafter RV) represent another approach that also departs from the fire-

sale framework.9 They model borrowers’ and intermediaries’ net worth jointly as state variables.10

In my model, intermediaries’ net worth is the only state variable. Firms face a natural debt limit—

they cannot pledge more than all future cash flows—but, unlike RV, they are not subject to haircuts

or margin requirements that make their net worth a second state variable. My focus is on analyzing

the dynamics of intermediaries’ net worth when firms’ demand for credit varies with the anticipated

credit-supply conditions. Moreover, my model is fully stochastic, generating booms, crises, and

endogenous transitions, and it characterizes intermediaries’ leverage choice that depends on ex ante

risk-return assessment, varies across credit-cycle stages, and affects the cross-stage transitions.11

Credit demand in the model has two features. The first is about how much firms want to bor-

row. Capital carries growth opportunities, so the demand for credit that finances capital creation is

driven by expectations of future credit-supply conditions that affect growth. When intermediaries’

net worth is low, this feature creates a comovement between intermediaries’ net worth and lending

opportunities. It locks the economy in crises with both depressed credit supply and demand. It

also contributes to the procyclicality of intermediaries’ leverage along the recovery path, making

7Examples include Lorenzoni (2008); Adrian and Boyarchenko (2012); He and Krishnamurthy (2012, 2013);
Brunnermeier and Sannikov (2014, 2016b); Dávila and Korinek (2017); Di Tella (2017, 2019); Moreira and Savov
(2017); and Caballero and Simsek (2020). Please refer to Brunnermeier and Sannikov (2016a) for a review.

8Examples—by no means exhaustive—include Gertler and Kiyotaki (2010); Gertler and Karadi (2011); Phelan
(2016); Korinek and Simsek (2016); Caballero and Simsek (2020, 2021); and Akinci and Queralto (2022).

9RV’s collateral constraint can be broadly viewed as a pledgeability constraint. Its role is not to connect credit and
asset fire sale. Their model generates crises without relying on a slump of market prices of collateral assets.

10Holmström and Tirole (1997) model jointly borrowers’ and intermediaries’ net worth without offering a dynamic
framework. Beyond RV, recent dynamic models emphasize quantitative performances (e.g., Gete (2018); Villacorta
(2018); Ferrante (2019); Elenev, Landvoigt, and Nieuwerburgh (2021); and Mendicino et al. (2025)).

11RV analyze dynamics around one-time shocks as in other papers (e.g., KM) that derive analytical (rather than
numerical) results. My paper also delivers analytical results on credit cycles but does so in a fully stochastic setting.

6



recovery fragile. The second feature is about how much firms can borrow. The limit is present

value of future cash flows. When intermediaries’ net worth is high and credit is abundant, firms

hit borrowing limits that constrain intermediaries’ lending (asset expansion). As a result, when

intermediaries accumulate net worth, equity replaces debt, making leverage countercyclical. The

hump-shaped leverage dynamics imply that between stable booms and stagnant crises, transition

can be abrupt, because intermediaries’ leverage and the shock sensitivity of their net worth are

highest when intermediaries’ net worth is at the intermediate levels. Sharp transitions from credit

booms to crises and stagnant recovery have been documented in the empirical literature (e.g., Schu-

larick and Taylor (2012); Baron, Verner, and Xiong (2021); and Krishnamurthy and Muir (2025)).

The borrowers’ debt limit plays a role that is distinct from that in other models of financial

crises and cycles. The literature emphasizes binding debt limits in bad times (e.g., RV).12 In con-

trast, firms’ borrowing limit in my model (how much firms can borrow) binds in good times when

credit is abundant. Its impact is on intermediaries’ leverage choice that in turn determines the dura-

tion of each cycle phase and transitions across phases. In bad times, the relevant force is how much

firms want to borrow, which drives intermediaries’ investment opportunities and profitability.

Models on intermediation cycles generate monotone leverage dynamics, either procyclical

or countercyclical.13 In my model, the cyclicality of intermediary leverage is state-contingent: it is

procyclical in certain states and countercyclical in others. The source of leverage cyclicality is also

distinct, tied to the aforementioned credit-demand features. In particular, my model shows that the

cyclicality of intermediaries’ leverage depends on whether their borrower clientele has slack debt

capacity. This is relevant for empirical analysis of intermediaries’ leverage choice (e.g., Adrian and

Shin (2010); He, Kelly, and Manela (2017)). When credit markets are segmented and cycles are

not perfectly synchronized across the segments, intermediaries may differ in leverage cyclicality.

12Firms’ borrowing constraint may take different forms (e.g., Christiano, Motto, and Rostagno (2014); Buera and
Moll (2015); Greenwald (2019); Drechsel (2023); Greenwald, Krainer, and Paul (2025)), but the emphasis has been on
its role in economic downturns. See Ottonello, Perez, and Varraso (2022) for analysis of generic borrowing constraints.

13Countercyclicality arises from improved investment opportunities in crises (e.g., He and Krishnamurthy (2013);
Brunnermeier and Sannikov (2014); Phelan (2016); Gersbach, Rochet, and Scheffel (2023)). Risk-based debt limits
lead to procyclicality (e.g., Adrian and Boyarchenko (2012); Adrian and Shin (2014); Nuño and Thomas (2017)).
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2 Model

Preferences, technology, and endowments are defined first, and then financial frictions are intro-

duced. The continuous-time, infinite-horizon economy has three types of agents, entrepreneurs,

households, and bankers. Let E, H, and B denote the sets of a unit mass of representative en-

trepreneurs, households, and bankers, respectively.

Entrepreneurs and households consume the numeraire goods and are risk-neutral with dis-

count rate ρ. They maximize life-time consumption. For example, an entrepreneur maximizes

E
[∫ ∞

t=0

e−ρtdcEt

]
, (1)

where cEt is the cumulative consumption. Wherever necessary, superscripts denote agents’ type.

At t = 0, a representative entrepreneur is endowed with k0 units of productive capital.

K0, the aggregate amount of capital, is
∫
n∈E k0 (n) dn. At time t, the entrepreneur with kt units

of capital can produce αktdt units of numeraire goods over dt, where the parameter, α (> 0),

represents productivity, so aggregate output is αKtdt. A fraction δdt−σdZt of capital is destroyed

over dt, where Zt is a Brownian motion. The aggregate shock, dZt, is the only source of risk.14

In the model, “capital” represents efficiency units that produce goods. It represents projects,

business subsidiaries, and productive assets. Let qKt denote the present value of all goods generated

by one unit of capital. This value incorporates not only the “cash flows”, i.e., α per unit of time,

but also the options to grow. The entrepreneur has a technology to grow capital. Let it denote

investment per unit of capital. Investment success is a Poisson event with intensity λ, independent

across capital units—that is, a fraction λdt of capital grows at the rate of F (it) over dt. F (·)
is an increasing and concave function.15 The net profit is qKt F (it) − it, i.e., the value of newly

created capital, qKt F (it), minus the cost, it. A fraction 1 − λdt of capital does not grow—that

is, the investment project turns out to be a zero-profit storage technology (instead of zero profit, a

negative return could be introduced but complicates notations without meaningful impact on the

14The information filtration is generated by Zt and satisfies the standard regularity conditions (Protter, 1990).
15For a unit of capital, the joint probability of destruction and growth is smaller than dt and thus negligible.
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mechanism). Investment is subject to a capacity constraint, it ≤ l. The following restriction on

F (·) is imposed so that capital growth does not exceed the discount rate, ρ, and the equilibrium

value of capital, qKt , is finite:

ρ > λF
(
l
)
− δ +

σ2

2
. (2)

Resources that entrepreneurs need for investment can be obtained from deep-pocket house-

holds. The allocation problem in this economy is whether funds can be channeled from households

to entrepreneurs. It is assumed that households cannot lend directly to entrepreneurs, and bankers

are required to intermediate credit supply. There are many reasons why intermediation is neces-

sary.16 This paper does not seek to provide another microfoundation. The goal to analyze the

dynamics of an economy where credit intermediation is essential. Moreover, “banks” in this paper

broadly represent credit intermediaries, including both traditional commercial banks and non-bank

lenders. The model applies as long as a credit intermediary engages with risky lending (rather than

risk-free investments) and its liability structure contains a mix of debt and equity.

As previously discussed, there are a unit mass of representative bankers. The set of bankers

is denoted by B. At t = 0, a representative banker is endowed with e0 units of numeraire goods.

E0, the aggregate amount of bankers’ wealth or bank equity, is
∫
n∈B e0 (n) dn. Bankers may issue

debt and equity to households, intermediating between households and entrepreneurs (“firms”).

After specifying the physical environment (i.e., preferences, technology, and endowments),

I now introduce the financial aspects of the economy. Banks extend loans to entrepreneurs at t

that are repaid after the entrepreneurs finish their investment projects at t + dt. The repayment is

1+Rtdt per unit of goods lent (i.e., the loan rate isRt), whereRt is to be determined in equilibrium.

Loans are backed by designated capital. Entrepreneurs default on a loan when the backing

capital perishes. Let lt denote the amount of credit for one unit of capital. We have

lt ≤ qKt . (3)

As previously discussed, qKt is the present value of all cash flows generated by this one unit of

16Financial intermediaries have expertise in monitoring (Diamond, 1984), screening (Ramakrishnan and Thakor,
1984), restructuring (Bolton and Freixas, 2000), and enforcing collateralized claims (Rampini and Viswanathan, 2019).
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capital and new capital that grows out of it through investments. This is a standard pledgeability

constraint.17 It does not tie credit, lt, to an asset that is transferred between agents as in a fire-sale

mechanism. In fact, throughout credit cycles, entrepreneurs’ capital need not exchange hands at all.

As noted above, the interpretation of capital is broad, including projects or business subsidiaries.

The purpose of connecting loans and capital to allow bank lending to load on the shock, dZt

(see also Klimenko et al. (2016) and Coimbra and Rey (2023)). As a reminder, a fraction δdt−σdZt

of capital is destroyed over dt, which is also the fraction of loans that default. Therefore,

[1− (δdt− σdZt)︸ ︷︷ ︸
default fraction

] (1 +Rtdt)︸ ︷︷ ︸
principal & interest repaid

= 1 +Rtdt− (δdt− σdZt) (4)

is the banker’s return on loans. Note that high-order infinitesimal terms of magnitude below dt are

ignored. Negative shocks, dZt < 0, increase the fraction of loans in default, reducing the return.

Bankers can issue risk-free bonds to households at t, which mature at t+ dt with an interest

rate rtdt, where rt is to be determined in equilibrium.18 As previously discussed, a representative

banker is endowed with wealth—bank equity capital—equal to e0 at t = 0. Let xt denote a banker’s

leverage, i.e., the ratio of lending (assets) to equity. The law of motion of bank equity, et, is

det = etxt︸︷︷︸
loan value

[Rtdt− (δdt− σdZt)]︸ ︷︷ ︸
net loan return

− et (xt − 1)︸ ︷︷ ︸
debt value

rtdt︸︷︷︸
debt cost

− dcBt︸︷︷︸
payout / issuance

= et [rt + xt (Rt − δ − rt)] dt+ etxtσdZt − dcBt . (5)

When raising equity from households (dcBt < 0), bankers face a proportional issuance cost

χ.19 As a result, bankers have the tendency to perpetually postpone payout (or consumption)

and save out of the financial constraint, which in turn causes their wealth to outgrow the rest of

economy. Following the literature (DeMarzo and Sannikov, 2006; Brunnermeier and Sannikov,
17Under lt > qKt , the entrepreneur would default on the loan, give up capital to the lending bank, and abscond lt.
18The short-term debts are safe, because under diffusive (Brownian) shocks, banks may continuously adjust balance

sheets to avoid negative equity. It will be shown that when equity is sufficiently low, banks optimally raise equity.
19To raise one dollar, a banker has to give 1+χ worth of equity to investors. This dilution cost captures informational

frictions in Myers and Majluf (1984) and Dittmar and Thakor (2007). Here negative payout, dcBt < 0, corresponds to
equity issuance (Brunnermeier and Sannikov, 2014; Klimenko et al., 2016; Phelan, 2016; Van den Heuvel, 2002)).
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2014), I assume that the discount rate of the bankers, denoted by ρ, is greater than entrepreneurs’

and households’, i.e., ρ > ρ, so that the bankers would consume if their equity capital is sufficiently

high. Let I{·} be an event indicator. A representative banker’s objective function is given by

E
[∫ ∞

t=0

e−ρt
(
1 + χI{dcBt <0}

)
dcBt

]
, (6)

where, when issuing equity (i.e., dcBt < 0), the banker faces a loss of χdcBt from the issuance cost.

Imposing the equity issuance cost is one way to model intermediaries’ financial constraints. Alter-

native approaches in the literature achieve the same purpose of limiting balance-sheet capacity.20

Let Et denote the aggregate equity of representative bankers,
∫
n∈B et(n)dn. The credit-

market clearing condition equates aggregate bank lending,Etxt, to entrepreneurs’ borrowing,Ktlt:

Etxt = Ktlt. (7)

Because bank credit is essential for financing investment, we have investment per unit of capital

it = lt. Equilibrium analysis describes the credit-market dynamics, for example, how lt is de-

termined and its cyclical properties. In summary, the economy’s productive capital grow through

entrepreneurs’ investments funded by bank loans. Banks issue debt and equity to households.

3 Equilibrium

The model has two frictions. On the credit-demand side, entrepreneurs’ borrowing is subject to

a pledgeability constraint (3). On the supply side, credit is channeled by bankers whose balance-

sheet capacity is constrained due to the equity issuance cost. Before equilibrium analysis, Sec-

tion 3.1 describes a benchmark setting where households bypass bankers and directly lend to en-

trepreneurs and entrepreneurs commit to repay and thus are not subject to the borrowing constraint.

20He and Krishnamurthy (2012) emphasize principal-agent frictions and the resultant financial constraints.
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3.1 The Frictionless Benchmark

At time t, an entrepreneur chooses the amount to borrow and invest, taking as given the equilibrium

value of capital, qKt . Her investment is successful with probability λdt: at the margin, one unit of

goods invested turns into F ′ (lt) units of capital, creating a net marginal gain of qKt F
′ (lt) − 1.

Therefore, the expected marginal return on investment is
[
qKt F

′ (lt)− 1
]
λdt. The expected cost

of credit is (Rt − δ)dt. A reduction δdt appears in the borrowing cost because capital as perishes

at an expected rate of δdt, allowing the entrepreneur to default on the corresponding loans.

Lemma 1 (Credit Demand) Entrepreneurs’ demand for bank credit within the investment limit

(i.e., lt < l) satisfies the following optimality condition that equates the expected cost of borrowing

and expected marginal profits from investment:

Rt − δ = λ
[
qKt F

′ (lt)− 1
]
. (8)

The proof of Lemma 1 is in Appendix A. In equilibrium, the expected return from lending to

entrepreneurs,Rt−δ, is equal to ρ, the households’ required rate of return (i.e., their discount rate).

Replacing the borrowing cost in Equation (8) by ρ, I obtain the following equilibrium condition:

λ
[
qKt F

′ (lt)− 1
]
= ρ. (9)

Fully solving the equilibrium requires solving the endogenous value of qKt . First, we conjecture

that qKt has the following law of motion in equilibrium:

dqKt
qKt

= µK
t dt+ σK

t dZt, (10)

where the drift term µK
t and the diffusion term σK

t are endogenous and determined in equilibrium.

Lemma 2 (Capital Valuation) The value of capital, qKt , satisfies the equilibrium condition:

qKt =
α + λ

[
qKt F (lt)− lt

]
− (Rt − δ) lt

ρ− (µK
t − δ + σσK

t )
. (11)
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Equation (11) resembles the Gordon growth formula. The proof of Lemma 2 is in Appendix

A. The numerator reflects the fact that capital is both directly productive and endows entrepreneurs

with growth opportunities. Investing in growth requires credit, so one unit of capital is paired with

lt units of loans with an effective cost ofRt−δ. The denominator contains the discount rate, ρ, and

the growth rate, which in turn can be decomposed into the expected change in the capital value,

µK
t , the expected destruction rate, δ, and Itô’s quadratic covariation between stochastic change of

the unit value of capital, qKt , and stochastic quantity via capital destruction, σK
t σ.

The equilibrium values of credit and capital, denoted respectively by lFB and qKFB (where

“FB” is for this “first-best”from this frictionless economy), are jointly determined as follows.

Proposition 1 (Frictionless Equilibrium) In the frictionless economy, the equilibrium value of

capital is given by

qKFB =
α + λ

[
qKFBF (lFB)− lFB

]
− ρlFB

ρ+ δ
. (12)

Let l∗FB denote the level of bank credit per unit of capital that solves the optimality condition (9)

λ
[
qKFBF

′ (l∗FB)− 1
]
= ρ , (13)

so we have the equilibrium level of credit given by lFB < l∗FB if l∗FB < l; otherwise lFB = l.

Equations (13) and (12) are, respectively, equations (9) and (11) with µK
t and σK

t equal to

zero under a constant qKt in equilibrium. Proposition 1 establishes the benchmark (first-best) levels

of credit and capital value that can be later compared against the values under financial frictions.

The proof is in Appendix A. One key message from the proposition is that, in the frictionless

economy, the level of credit provision is constant—that is, credit cycles do not exist.

In the following analysis, I impose the parameter condition

l > qKFB,

which implies that the pledgeability constraint, lt ≤ qKt , binds before the constraint of investment

capacity, lt ≤ l. Therefore, the relevant friction on the credit demand side is the pledgeability

constraint rather than the technological constraint on the size of investment.
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3.2 Credit Supply and Demand Curves

I analyze the equilibrium where credit supply requires bankers’ intermediation. There are two

frictions, the pledgeability constraint on entrepreneurs’ borrowing and bankers’ equity issuance

cost. I will derive the credit supply and demand curves and characterize how they evolve with the

state variable that is the ratio of bank equity to the stock of entrepreneurs’ productive capital,

ηt ≡
Et

Kt

. (14)

This ratio measures the scarcity of intermediation capital (bank equity) relative to the size of real

economy. The following proposition states that ηt is a key state variable in the Markov equilibrium.

Proposition 2 (Markov Equilibrium) For any endowments {k0(n), n ∈ E} and {e0(n), n ∈ B},

there exists a Markov equilibrium with ηt as the state variable.

The proof is in Appendix A. In the following, to differentiate demand and supply, let lSt
denote bankers’ supply of credit, lDt denote entrepreneurs’ demand for credit, and lt denote the

market-clearing level of credit per unit of capital. In the frictionless economy, credit supply is

perfectly elastic at the loan rate Rt = ρ + δ, where ρ is the households’ discount rate and δ is the

expected default rate. When financially constrained banks intermediate credit supply, the loan rate

deviates from this frictionless benchmark, and credit supply is no longer perfectly elastic.

Credit supply. A banker’s decision to consume (dcBt > 0) or to raise equity (dcBt < 0) depends

on the marginal value of equity. The homogeneity property of banker’s problem suggests that value

function is linear in equity, qBt et.
21 In equilibrium, the marginal value of equity cannot fall below

one, in which case the banker is better off consuming one unit of goods than retaining equity. In

equilibrium, qBt also cannot rise above 1 + χ, in which case, paying the issuance cost and raising

equity is strictly profitable. Therefore, we have qBt bounded in the interval [1, 1 + χ]. If equity

issuance is frictionless (χ = 0), the banker is no longer financial constrained, and qBt = 1 in all

21This conjecture of value function is formally proven in the appendix where it is shown that this functional form is
consistent with the Hamilton-Jacobi-Bellman (HJB) equation.
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states of the world. The next lemma shows that qBt reflects the scarcity of bank equity capital

relative to the size of production sector that demands bank credit. The proof is in Appendix A.

Lemma 3 (Bank Equity Scarcity) The marginal value of bank equity, qBt = qB(ηt), is a mono-

tone function of ηt, and ηt, is bounded in
[
η, η

]
where η and η, are endogenously determined by

the optimality conditions for bank equity issuance and payout (consumption), respectively,

qB
(
η
)
= 1 + χ , and qB (η) = 1 . (15)

At any ηt ∈
[
η, η
)
, qB(ηt) is strictly decreasing in ηt, i.e., dqB(ηt)

dηt
< 0, and, at ηt = η, dqB(ηt)

dηt
= 0.

The marginal value of equity, qBt = qB(ηt), is highest, equal to 1+χ at η, the equity issuance

(lower) boundary of ηt where bank equity capital is the most scarce. At the other extreme, when

ηt rises to η, the bank is sufficiently well-capitalized, so qBt = 1 and it is optimal to consume as

retaining equity no longer adds value.22 The ratio of bank equity to capital stock, ηt, is the state

variable of the economy, reflecting the scarcity of bank equity and driving its marginal value.

By Itô’s lemma, ηt has the following law of motion:

dηt
ηt

=
{
rt + xt (Rt − δ − rt)− [λF (lt)− δ]− (xt − 1)σ2

}︸ ︷︷ ︸
≜ µη

t

dt+ (xt − 1)σ︸ ︷︷ ︸
≜ ση

t

dZt − dyt , (16)

where dyt = dcBt /et denotes bankers’ payout- or issuance-to-equity ratio. Its drift is determined by

the expected growth of bank equity (see (5)) relative to that of productive capital.23 The diffusion

term, (xt − 1)σ, is positive because, in equilibrium, bank leverage (asset-to-equity ratio) xt is

greater than 1. Therefore, ηt loads positively on the aggregate shock, ση
t > 0.24 Under ση

t > 0, bank

equity becomes more scarce—ηt decreases and drives qBt higher—after negative shocks (dZt < 0).

As a reminder, negative shocks destroy more capital and increase the number of delinquent loans.

22The amounts of issuance at η and payout at η exactly offset variation in ηt that would otherwise cause ηt to move
beyond the two reflecting boundaries η and η. The proof of Lemma 3 provides further discussion on the boundaries.

23The term (xt − 1)σ2 in the drift is from Itô’s quadratic covariation given that dKt = F (lt)λdt−(δdt− σdZt)Kt.
24The model generates cyclicality in bank equity management that is consistent with the evidence (Baron, 2020;

Adrian, Boyarchenko, and Shin, 2015): following positive shocks, ηt increases and approaches the payout boundary,
η, while negative shocks pushes ηt closer to the equity issuance boundary, η.
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Since more loans default when the marginal value of equity, qBt , is higher, bankers charge

a risk premium when lending to entrepreneurs, akin to the asset pricing models where investors

require excess expected return for holing assets that deliver low returns when the marginal value

of wealth is high. In continuous-time settings, the risk premium is the negative of instantaneous

covariance between asset return and the growth rate of marginal value of wealth (e.g., Cochrane,

2005). The same logic holds here except that loan risk premium emerges from financial friction

rather than risk aversion. Let ϵBt denote the elasticity of marginal value of bank equity, qBt , to ηt:

ϵB(ηt) =
dqB(ηt)/q

B(ηt)

dηt/ηt
< 0 . (17)

for ηt ∈
[
η, η
)
, and, at ηt = η, ϵB(η) = 0 according to Lemma 3. By Itô’s lemma, the shock loading

of the growth rate of qBt (i.e., dqBt /q
B
t ) is ϵBt σ

η
t . The return on loans has a shock loading σ (see

(4)). Therefore, the loan risk premium is −ϵBt ση
t σ, i.e., the negative of instantaneous covariance

between the growth rate of qBt , the marginal value of bank equity, and return on loans. A formal

proof is provided in Appendix A. The next lemma summaries the results on loan risk premium.

Lemma 4 (Loan Risk Premium) The equilibrium loan rate, Rt, is given by

Rt = rt + δ + γBt σ, (18)

where the loan risk premium can be decomposed into the quantity of loan risk, σ, and the bankers’

price of risk, γBt , that is in turn given by

γBt = −ϵB(ηt)ση
t = −ϵB(ηt) (xt − 1)σ > 0 . (19)

The net interest margin, i.e., Rt− rt, compensates both the expected default rate, δ, and loan

risk premium, γBt σ.25 As previously discussed, under χ = 0, the marginal value of bank equity

is a constant, i.e., qBt = 1, and thus does not load on shocks (i.e., ϵBt = 0). As a result, loan risk

premium is zero, and the net interest margin only contains the expected default rate, δ. In this

25This result is closely related to the “credit spread puzzle” that less than one-half of the variation in credit spreads
can be attributed to borrowers’ expected default probability (i.e., δ in the model). The unexplained portion is due to
time-varying risk premium (e.g., Collin-Dufresn, Goldstein, and Martin, 2001).
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case, the loan rate, Rt = ρ + δ, equal to the loan rate in the frictionless benchmark economy in

Section 3.1. Under χ > 0, the loan rate is above ρ+ δ. Therefore, in the model, loan risk premium

ultimately emerges from bankers’ financial frictions (i.e., the equity issuance cost).

Next, I derive the credit supply curve. First, I pin down bankers’ debt cost. Bankers can

issue debt to households at interest rate rt = ρ, where ρ is households’ discount rate.

Lemma 5 (Equilibrium Risk-free Rate) The interest rate offered by bank debt, rt, is equal to ρ.

Lemmas 3, 4, and 5 provide all the necessary ingredients for deriving the credit supply

curve. Credit supplied per unit of capital, lSt , is equal to aggregate bank lending, xtEt, divided by

the aggregate stock of capital, Kt, i.e., lSt = xtEt/Kt = xtηt. Substituting this expression into (19)

and substituting rt with its equilibrium value ρ, I obtain the credit supply curve from (18):

Rt = ρ+ δ + bt
(
lSt − ηt

)
, (20)

where the last term is from the risk premium γBt σ, and the slope, bt = b(ηt), is a function of ηt:

b(ηt) = −ϵ
B(ηt)σ

2

ηt
. (21)

As the ratio of bank equity to capital stock, ηt, evolves over time, credit-supply elasticity varies.

The next proposition characterizes a credit supply curve. The proof is in Appendix A.

Proposition 3 (Credit Supply Curve) The credit supply curve in the space of loan rate and loan

amount, (Rt, l
S
t ), given by (20) is upward-sloping, i.e., b(ηt) > 0, when ηt is in

[
η, η
)
, and b(η) = 0.

Credit demand. The next proposition extends Lemma 1 on entrepreneurs’ credit demand by

incorporating the pledgeability constraint and emphasizes that capital value, qKt , in equilibrium is

no longer a constant as in the frictionless economy but instead it varies with ηt.

Proposition 4 (Credit Demand Curve) The credit demand curve is characterized as follows:
• Given qKt , the entrepreneurs’ optimality condition (8) for lDt holds and implies a downward-

sloping demand curve in the space of loan rate and loan amount, (Rt, l
D
t ), i.e., ∂lDt

∂Rt
≤ 0, if

the pledgeability constraint does not bind, i.e., lDt < qKt ; otherwise, lDt = qKt .
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Figure 1: Credit Market. In the space of credit per unit of capital, lt (the horizontal axis), and loan rate, Rt (the
vertical axis), this figure plots the entrepreneurs’ credit demand (blue dashed line), equation (8), the pledgeability
constraint (3) on lt at qKt marked by the square point (vertical grey dashed line), and bankers’ credit supply (red solid
line), equation (20), given ηt, qKt and ϵBt . The credit market clears at the intersection marked by the round points. The
triangle point marks the investment target given by equation (22). Panel A illustrates the case where the pledgeability
constraint does not bind, i.e., lt < qKt . Panel B illustrates the case where the pledgeability constraint binds, lt = qKt .

• Capital value, qKt = qK(ηt), is a function of ηt. It shifts the credit demand curve in the space

of (Rt, l
D
t ): given any loan rate Rt, credit demand is increasing in qKt , i.e., ∂lDt

∂qKt
≥ 0.

The proof is in Appendix A. Given qKt , the concavity of F (·) implies a downward-sloping

curve in the space of loan rate and loan amount, (Rt, l
D
t ) through the optimality condition (8).

The value of capital, qKt , reflects the entrepreneurs’ expectations of capital growth path and cost

of credit, shown by the equilibrium condition (11). An increase of qKt reflects an improved expec-

tation of capital growth and future credit conditions, so entrepreneurs want to obtain more credit

to finance the creation of new capital, resulting in the credit demand curve shifting outward, i.e.,
∂lDt
∂qKt

≥ 0 for any value of Rt, in the region where the pledgeability constraint does not bind.

Credit market clearing. Figure 1 illustrates a time-t snapshot of the credit market. Given the

value of ηt, capital value and the elasticity of margin value of bank equity, i.e., qKt = qK(ηt)

and ϵBt = ϵB(ηt) respectively, are pinned down so that we can locate the credit demand and supply
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curves in the space of loan rate (the vertical axis) and loan amount per unit of capital (the horizontal

axis). In both Panel A and B, the credit supply curve (red solid line) is drawn starting from lSt = ηt,

where bank lending is fully equity-financed (i.e., the asset-to-equity ratio, xt = 1). At lSt = ηt,

the loan rate is ρ + δ as shown in (20), and as lSt increases, the loan rate increases with the slope

given by b(ηt) in Proposition 3. In both Panel A and B of Figure 1, the credit demand curve has two

parts. The gray dotted line represents the pledgeability constraint and located at lDt = qKt . The blue

dashed line represents the relationship between loan rate and loan amount when the pledgeability

constraint is not binding, given by the optimality condition (8). In the figure, l∗t denotes where this

line crosses the hypothetical loan rate Rt = ρ + δ, i.e., the level of borrowing when the loan rate

does not incorporate loan risk premium and when the pledgeability constraint does not bind:

λ
[
qKt F

′ (l∗t )− 1
]
= ρ. (22)

The market-clearing (lt, Rt) is marked by the round points in Figure 1.

In Panel A, the pledgeability constraint does not bind, and the market clears at lt < qKt ,

where the demand and supply curves implied by (8) and (20), respectively, intersect:

λ
[
qK(ηt)F

′ (lt)− 1
]
= ρ+ b(ηt) (lt − ηt) . (23)

In Panel B, the pledgeability constraint binds, lt = qKt . The shadow price of pledgeability con-

straint is equal to the wedge between market-clearing Rt and the hypothetical (higher) loan rate at

the intersection of demand and supply curves implied by (8) and (20), i.e., the hypothetical market-

clearing rate if the pledgeability constraint were to be eliminated. Under the equilibrium loan rate

Rt, entrepreneurs would like to borrow more, as the marginal value from investing, λ[qKt F
′(lt)−1],

is above the borrowing cost, Rt − δ, i.e., the right side of (8) is greater than the left side.

The dynamic economy can be viewed as a sequence of credit-market clearing that progresses

over time, driven by ηt. The state variable, ηt, dictates the credit-market conditions. It enters the

credit demand curve via qK (ηt) in the pledgeability constraint (3) and optimality condition (8). It

enters the credit supply curve given by (20) through ϵB (ηt) in slope of the supply curve, b(ηt).
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3.3 Credit Market Dynamics

The analysis so far focuses on credit-market clearing in one state of the world given by the value

of ηt. Once ηt is fixed, the values of qK (ηt) and ϵB (ηt) are given, and they determine the locale

and shape of credit demand and supply curves, respectively. Next, I characterize how the credit

demand and supply curves evolve as ηt varies over time and responds to shocks.

A parameter condition is imposed for the next proposition: 2(ρ−ρ)
σ2 > 1. Bankers’ discount

rate being higher than households’ (impatience) is a force contributing to leverage (i.e., bankers

borrowing from households). The condition requires discount-rate wedge to be large enough after

loan risk adjustment so that bank leverage, xt, is high enough.26 In Section 3.4, numerical solutions

show realistic leverage under this condition. The proof of next proposition in Appendix A.

Proposition 5 (The Procyclicality of Credit Supply) The slope of credit supply curve, b (ηt) given

by (20), is strictly decreasing in ηt, i.e., d b(ηt)
dηt

< 0. Therefore, an increase of ηt causes credit sup-

ply, given by Proposition 3, to expand at any loan rate, Rt.

Credit supply becomes more elastic when banks become better capitalized. Graphically, an

increase from ηt to ηt+dt rotates the credit supply curve clockwise by reducing the slope according

to Proposition 5 and moves the intercept outward as shown in (20). This is illustrated by the credit-

supply expansion from Line 1 to Line 2 in Panel A of Figure 2. So, for any given Rt, bankers

lend more when ηt increases. As a result, the market-clearing point moves A to B along the credit

demand curve. State-dependent credit supply emerges from bankers’ financial constraint in the

form of equity issuance cost. As previously discussed, if χ = 0, qBt = 1 and bt = 0 (under

ϵBt = 0), and credit supply is always perfectly elastic at Rt = ρ+ δ. Under χ > 0, credit supply is

more elastic when banks are better capitalized and thus less financially constrained. The illustration

in Panel A holds the credit demand curve fixed. However, in equilibrium, as ηt increases and the

credit-supply condition improves, the credit demand curve responds as well, illustrated in Panel B.

I will explain the mechanism following the next proposition. The proof is in Appendix A.

26This condition is satisfied under standard parameter values. For example, for σ = 0.1 (see Appendix C for
parameters used in the numerical examples), the condition requires a discount-rate wedge of at least 50 basis points.
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Figure 2: Credit Market Dynamics. In the space of credit per unit of capital, lt (the horizontal axis), and loan
rate, Rt (the vertical axis), this figure plots the entrepreneurs’ credit demand (blue dashed line), equation (8), the
pledgeability constraint (3) on lt at qKt marked by the square point (vertical grey dashed line), and bankers’ credit
supply (red solid line), equation (20), given ηt, qKt and ϵBt . The credit market clears at the intersection marked by the
black round points. The triangle point marks the credit level given by equation (22). Panel A illustrates the expansion
of credit supply through the decline of bt in Proposition 5, from line 1 to 2, which is induced by the increase of the
state variable ηt to ηt+dt. The resultant movement of market-clearing point is from point A to B. Panel B illustrates the
expansion of credit demand that is due to the increase of qKt when ηt increases in ηt+dt (Proposition 6). The increase
of qKt causes the blue dashed line (given by Equation (8)) and the vertical gray dashed line (pledgeability constraint)
to shift outward, from position 1 to 2. The resultant movement of market-clearing point is from point B to C.

Proposition 6 (The Procyclicality of Credit Demand) The equilibrium capital value, qK (ηt), is

strictly increasing in ηt, i.e., dqK(ηt)
dηt

> 0, in
(
η, η
)
. When η = η or η, dqK(ηt)

dηt
= 0. Therefore, an

increase of ηt causes credit demand, given by Proposition 4, to expand at any loan rate, Rt.

The procyclicality of credit demand arises from contemporaneous and intertemporal chan-

nels illustrated by Figure 3. Consider ηt ∈
(
η, η
)

and a positive shock, dZt, increases ηt. Credit

supply is more elastic and banks charge a lower loan rate (Proposition 5). As a result, entrepreneurs

borrow more and grow capital faster, which increases capital value, as shown in (11). The increase

of qKt implies greater gains from investment and also relaxes the pledgeability constraint (black

arrows), inducing a stronger credit demand (teal blue arrows). The market-clearing level of credit

rises because both credit supply and demand expand. This is the contemporaneous channel.
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Figure 3: Credit Market Procyclicality: Contemporaneous and Intertemporal Feedback Channels. This figure
illustrates the mechanisms behind procyclicality of the credit market. Following positive shocks, the supply curve
becomes more elastic and bankers charge a lower loan rate, which leads to more borrowing by entrepreneurs, faster
capital growth, and higher capital value (black arrows). Higher capital value relaxes the pledgeability constraint,
allowing entrepreneurs to borrow even more (black arrow). As the shock’s impact is persistent, the path of expected
credit cost shifts downward and path of expected capital value shifts upward. The expected increase of capital value
feeds into a higher current value of capital (olive arrows), which in turn stimulates entrepreneurs’ current investment
need and expands the credit demand, which further raises the equilibrium level of credit (teal blue arrows).

An intertemporal channel further increases capital value because the shock’s impact is per-

sistent. Financial constraint (the equity issuance cost) leads to precautionary savings—that is,

following the positive shock, bankers would not immediately consume the associated earnings but

instead retain earnings to accumulate equity, i.e., the financial slack, to prevent costly equity rais-

ing when ηt is low. As a result of retained earnings, not only the current value of ηt increases,

the positive shock lifts the whole path of ηt into the future. Therefore, the positive shock not only
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leads to a credit-supply expansion now but is also anticipated to push outward future credit supply

curves.27 Accordingly, entrepreneurs foresee a higher market-clearing level of credit provision on

the equilibrium path and faster capital growth rates going forward. An improved growth trajectory

feeds into a higher current value of capital, qKt , through the expected appreciation µK
t , as shown in

(11). Moreover, higher values of qKt relax the pledgeability constraint along the growth path. The

olive-colored arrows in Figure 3 show the intertemporal channel of such credit-demand expansion.

Proposition 6 shows that capital value, qKt = qK(ηt), is an increasing function of state vari-

able ηt, the ratio of bank equity to capital stock that measures the intermediation capacity relative

to the size of economy. Figure 3 demonstrates the mechanisms behind dqK(ηt)
dηt

> 0.28 It is ulti-

mately the current credit-supply conditions and entrepreneurs’ expectation of future credit-supply

conditions that drive capital value, which in turn determines the credit demand curve. In other

words, procyclicality originates in the banking sector. The direct impact of shocks is on bank

equity and its intermediation capacity. Credit demand also responds because the value of capital

reflects entrepreneurs’ expectation of credit provision and capital growth on the equilibrium path.

Back in Figure 2, Panel A shows the credit supply curve shifts outward and becomes more

elastic following an increase of ηt (Propositions 5) and the market-clearing point moves from Circle

A to B. The mechanism does not end here. In Panel B, qKt increases under a higher ηt (Proposition

6) and causes the demand curve (blue dashed line given by (8)) to move from line 1 to 2 and

pushes outward the vertical gray dashed line that marks the pledgeability constraint lt ≤ qKt . The

market-clearing point moves further from Circle B to C along the more elastic supply curve.

The next proposition summarizes how the equilibrium level of credit provision varies with ηt.

The proof is in Appendix A. In the frictionless economy, the equilibrium level of credit provision,

lt, is constant, and there does not exist credit cycle. In contrast, when financially constrained banks

27Mathematically, in the interior region, i.e., ηt ∈ (η, η), qB(ηt) is strictly above 1 under χ > 0 (i.e, there exists
equity issuance costs). Given that qB(ηt) is a continuous function of ηt, qBt cannot suddenly jump downward to 1
and trigger payout following a positive Brownian (diffusive) shock to ηt, i.e., dZt > 0, that cannot cause ηt to jump
from the interior region to the payout (upper) boundary, η. Therefore, the increase of ηt is expected to dissipate only
gradually into the future as a subset of future realized paths of ηt lead to η after ηt increases over certain periods
of time. In contrast, under χ = 1, qB(ηt) = 1 and bankers consume any earnings and do not precautionarily save.
Therefore, the persistent impact of shocks is ultimately due to the equity issuance cost.

28Asset price variations tend to be driven by discount-rate variations (e.g. Cochrane (2011)). In the model, discount
rate is fixed at ρ, so the variation in qKt is purely driven by entrepreneurs’ investment gains and borrowing cost.
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are required to intermediate the supply of funding, credit cycle emerges, that is lt varies with ηt.

Proposition 7 (The Procyclicality of Equilibrium Credit) The equilibrium level of credit per unit

of capital, lt = l (ηt), is strictly increasing in ηt, i.e., dl(ηt)
dηt

> 0.

Next, I characterize the sources of inefficiency. In Figure 1, the level of credit, l∗t , which is

given by (22) and marked by the triangular points in Figure 1, acts as an efficiency benchmark. It

is the market-clearing level of credit in the absence of entrepreneurs’ pledgeability constraint and

loan risk premium that is due to bankers’ equity issuance cost. In Panel A, the wedge between the

equilibrium level, lt, and l∗t is caused by loan risk premium. Should bankers’ equity issuance cost

is zero (χ = 0), the marginal value of bank equity would be a constant equal to one (qBt = 1 and

thus ϵB(ηt) = 0), and credit supply would be perfect elastic at the loan rate Rt = ρ+ δ. Therefore,

the wedge between lt and l∗t in Panel A is ultimately due to bankers’ equity issuance cost. In Panel

B, lt < l∗t is due to the binding pledgeability constraint, lt = qKt . The frictions—bankers’ equity

issuance cost and entrepreneurs’ pledgeability constraint—lead to inefficiency.

The analysis so far has compared the equilibrium level of credit, lt, against l∗t ; yet, l∗t still

depends on capital value qKt (see the definition of l∗t given by (22)), and qKt is endogenous and

reflects entrepreneurs’ expectation of future credit provision and capital growth on the equilibrium

path. Therefore, using l∗t as an efficiency benchmark serves the purpose of illustrating the mecha-

nisms but does not fully account for inefficiency. The next two propositions formally state that the

equilibrium capital value, qKt , is below the frictionless benchmark, qKFB in Proposition 1, and the

equilibrium credit provision, lt, is below lFB in Proposition 1. The proofs are in Appendix A.

Proposition 8 (Capital Value Wedge) qK(ηt) < qKFB for ηt ∈
[
η, η
)

and qK(η) ≤ qKFB.

Proposition 9 (Credit Wedge) l(ηt) < lFB for ηt ∈
[
η, η
)

and l(η) ≤ lFB.

This proposition states that the frictions—bankers’ equity issuance cost and entrepreneurs’

pledgeability constraint—cause the equilibrium level of bank credit and entrepreneurs’ investment

to be inefficiently low. Proposition 7 implies that, when bank equity increases relative to the size

of real economy (i.e., ηt = Et/Kt increases), the resultant expansion of credit supply and demand
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leads to an increase in lt = l(ηt), narrowing the wedge, lFB − lt, in Proposition 9. As ηt evolves

over time, the economy features credit booms (high-ηt states) and credit crunches (low-ηt states).

3.4 Credit Boom-Bust Cycles

The equilibrium is driven by ηt, the ratio of bank equity to capital stock, which measures the

scarcity of bank equity. As shown in Proposition 5 and 6, both the credit supply and demand

curves vary with ηt. As a result, lt, the equilibrium credit level, is increasing in ηt (Proposition 7).

Therefore, the key to understanding the credit boom-bust cycle is the law of motion of ηt

given by (16), and in particular, its diffusion and drift terms. This law of motion governs the

transition across different states of the economy. The diffusion term, (xt − 1)σ, which determines

how ηt responds to shocks, depends on bank leverage xt. The first component of the drift, rt +

xt(Rt−δ−rt), is the banks’ expected return on equity (ROE), which is the risk-free rate (equal to ρ

in equilibrium) plus the expected excess return on lending, Rt−δ−rt, multiplied by bank loan-to-

equity ratio (leverage), xt.29 Next, I characterize the dynamics of bank leverage and ROE, and then,

based on these results, analyze the dynamics of ηt and credit boom-bust cycles. In particular, I will

demonstrate that the economy either spends extended periods in credit booms, characterized by

high values of ηt and high levels of equilibrium credit provision lt, or becomes trapped in stagnant

credit crunches. The transition between these endogenous regimes often occurs abruptly.

Bank leverage dynamics. To clearly demonstrate the economic forces that drive bank leverage

and profitability (ROE), I consider a simple functional form of the investment function: F (lt) =

κlt if lt < l, and F (lt) = κl if lt ≥ l. Under this functional form, investment is scalable up to l.30

And, the following parameter condition is imposed:

λ

[(
α

ρ+ δ

)
κ− 1

]
> ρ.

29The other components are the expected growth rate of Kt, i.e., λF (lt)− δ, and the quadratic covariation term.
30Note that the pledgeability constraint, lt ≤ qKt , binds before the capacity constraint, lt ≤ l, that is qKt < l because

qKt ≤ qKFB from Proposition 8 and qKFB < l, the parameter condition at the end of Section 2.
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Note that α
ρ+δ

is the hypothetical value of capital without growth opportunities, given by the Gorton

growth formula with the numerator (cash flow), α, and denominator (discount rate) including the

time-discount rate, ρ, and depreciation rate, δ. This condition states that marginal investment

is profitable even without future growth opportunities.31 This condition ensures that investment

technology is sufficiently profitable, so what drives credit demand is not technological reasons but

entrepreneurs’ expectation of future credit-supply conditions, embedded in qKt , shown in Figure 3.

Next, I characterize the dynamics of bank leverage and then the dynamics of bank ROE.

When the entrepreneurs’ pledgeability constraint does not bind, xt, the ratio of bank asset (loans)

to equity, is solved from the credit-market clearing condition (23).32 When the pledgeability con-

straint binds, i.e., lt = qKt , xt can be solved as through the market-clearing condition (7) scaled by

Kt, i.e., ηtxt = lt, so we obtain xt = lt/ηt = qKt /ηt. The next lemma summarizes the results.

Lemma 6 (Solving Bank Leverage) When the entrepreneurs’ pledgeability constraint does not

bind, bank leverage (asset-to-equity ratio) is given by

xt = 1 +

(
λ
[
qK(ηt)κ− 1

]
− ρ

−ϵB(ηt)σ2

)
. (24)

When the entrepreneurs’ pledgeability constraint binds, bank leverage is given by

xt =
qKt
ηt
. (25)

When the pledgeability constraint does not bind, the driving force of credit demand is cap-

tured by λ
[
qK(ηt)κ− 1

]
− ρ in (24), the marginal profit from entrepreneurs’ investment. If in-

vestment is more profitable, the entrepreneurs’ demand for credit strengthens, inducing bankers to

raise leverage. Banks’ willingness to increase loan risk exposure through leverage also depend on
31On the left side of the inequality, investment is successful with probability λdt in creating κ units of no-growth

capital (worth α
ρ+δ per unit) out of 1 unit of goods invested, and with probability 1− λdt, the investment fails, acting

as a storage technology. On the right side is the required rate of return or discount rate, ρdt. The dt is then canceled on
both sides. Proposition A.1 in Appendix A formally proves the equilibrium capital value with growth opportunities,
qKt , is greater than α

ρ+δ . Therefore, investing in capital with growth opportunities is even more profitable.
32Specifically, by substituting out lt with xtηt (based on the Kt-scaled market-clearing condition (7)) and substitut-

ing out the slope of credit supply curve, b(ηt) with −ϵB(ηt)σ
2/ηt (see (21)), xt can be solved from (23).
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their risk-taking capacity, captured by −ϵB(ηt), defined in (17), the elasticity of qB(ηt), bankers’

marginal value of wealth, with respect to the state variable, ηt. Lemma 3 shows that qB(ηt) is

decreasing in ηt, so we have ϵB(ηt) < 0. The next lemma shows how ϵB(ηt) varies with ηt.

Lemma 7 (Bank Risk-Taking Capacity) ϵB(ηt), defined in (17), is strictly increasing in ηt.

The proof is in Appendix A. When bank equity becomes more scarce (ηt decreases), ϵB(ηt) is

more negative. As a result, bankers’ marginal value of wealth, qBt , is more sensitive to variation of

the state of economy, and their risk-taking capacity shrinks, reducing leverage xt. In contrast, as ηt

increases, ϵB(ηt) becomes less negative, driving up bank leverage. This is the force of procyclical

risk-taking capacity on the credit supply (bank) side. Moreover, as shown in Proposition 6, qKt (ηt)

is also increasing in ηt, reflecting the procyclicality of investment profits on the credit demand

(entrepreneur) side. Therefore, both the numerator and denominator of xt in (24) contribute to the

procyclicality of bank leverage when the pledgeability constraint does not bind.

In contrast, when the pledgeability constraint binds, bank leverage xt is countercyclical (de-

creasing in ηt) as ηt approaches the upper bound, η. As shown in Proposition 6, dqK (ηt) /dηt

approaches zero as ηt approaches η where bankers no longer retain earnings. This is because the

intertemporal channel in Figure 3 weakens: as ηt approaches η, entrepreneurs no longer foresee

a persistent impact of positive shocks to ηt, because ηt cannot go beyond the bankers’ optimal

consumption boundary, η at which any increase in bank equity will not be retained but consumed.

In summary, when firms have spare debt capacity, bank leverage is given by (24) and is

procyclical (increasing in ηt). When ηt is sufficiently high, bank leverage becomes countercyclical.

The next proposition summarizes the hump-shaped dynamics. The proof is in Appendix A.

Proposition 10 (Bank Leverage Cycle) When the pledgeability constraint does not bind, dx(ηt)
dηt

>

0. There exists η̃ < η such that, at ηt > η̃, the pledgeability constraint binds and dx(ηt)
dηt

< 0.

To visualize the bank leverage dynamics in Proposition 10, I solve the Markov equilibrium

numerically using the method in Brunnermeier and Sannikov (2014).33 In Appendix B, I discuss
33As in Brunnermeier and Sannikov (2014), solving Markov equilibrium in Proposition 2 involves converting the

equilibrium conditions into a system of differential equations for endogenous variables, such as capital value and
bankers’ marginal value of wealth. The proof of Proposition 2 in Appendix A provides details on the method.
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Figure 4: Bank Leverage and ROE Dynamics. This figure plots bank leverage and return on equity (ROE) as
functions of ηt in Panel A and B, respectively, under CRS (solid line) and DRS (dashed line) investment technologies
in the production sector. This figure is based on numerical solutions with parameters calibrated in Appendix B and C.

the calibration of χ, the equity issuance cost by reviewing the related empirical literature. In

Appendix C, I discuss the calibration of other parameters. For robustness, I also report the model

solution under an alternative investment technology as well. The baseline technology is scalable

(constant return-to-scale or “CRS”) up to l, while the dashed line represents a decreasing return-

to-scale (DRS) technology, F (lt) = κlκ1
t with κ1 < 1. The calibration exercise in Appendix C

intentionally avoids involving any bank characteristics, so the dynamics of bank leverage and ROE

can be viewed model predictions rather than calibration targets. Moreover, I emphasize that the

model is designed with minimal ingredients to demonstrate theoretical mechanisms rather than to

replicate empirical patterns that depend on forces in the model and those outside the model.

Panel A of Figure 4 illustrates how bank leverage, xt, varies with the state variable, ηt. Con-

sider a path of ηt increasing from η and eventually reaches η, representing an economy recovering

from a credit crunch and evolving into a credit boom. Bank leverage increases at first when the

pledgeability constraint does not bind. A contributing factor is the expansion of credit demand

fueled by entrepreneurs’ expectation of improving credit-supply conditions in the future that in

turn contributes to an improving prospect of capital growth as illustrated in Figure 3.

As ηt keeps increasing and passes the threshold η̃, credit supplied by bankers has grown to a

level where the entrepreneurs’ pledgeability constraint binds (i.e., lt = qKt ), so, any further growth

of equilibrium level of credit solely lies on the rising capital value, qKt . However, as ηt approaches
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η, the increase of capital value in ηt tapers off, as previously discussed (at ηt = η, dqK(ηt)
dηt

= 0

in Proposition 6). Therefore, the growth of bank asset (lending) cannot catch up with that of

equity, resulting debt being “crowded out” and bank leverage, xt, being countercyclical. Such

hump-shared relationship between xt and ηt holds both CRS and DRS investment technologies.

Finally, I want to highlight an empirical prediction of Proposition 10. In the model, a bank

represents a financial intermediary that corresponds to commercial banks or other credit inter-

mediaries in reality. Different types of credit intermediaries serve different borrower clienteles.

The model shows that the leverage of credit intermediaries is procyclical when the borrowers’

pledgeability constraint does not bind and countercyclical when the pledgeability constraint binds.

Therefore, when empirically examining leverage cyclicality of credit intermediaries, it is important

to condition on whether their borrowers’ pledgeability constraint binds. This observation is rele-

vant for analyzing both the aggregate intermediation sector and the cross-sectional heterogeneity

across different types of intermediaries. In reality, it can happen that one type of intermediaries

exhibit procyclical leverage as the borrowers they serve do not face a binding pledgeability con-

straint, while another type of intermediaries exhibit countercyclical leverage as their customers’

(borrowers’) pledgeability constraint binds. As previously emphasized, the goal of this paper is

not to replicate empirically observed patterns of leverage cyclicality, which depend on economic

forces in and outside of my model. The goal is to demonstrate new theoretical mechanisms on

leverage dynamics and, importantly, their implications on the credit boom-bust cycles.

Bank profitability dynamics. Bank ROE also exhibits a hump-shaped relationship with ηt as

bank leverage does. First, consider the case where the pledgeability constraint does not bind:

ROEt = rt + (Rt − δ − rt)xt = ρ+
(
λ
[
qKt κ− 1

]
− ρ
)
xt (26)

where rt is substituted out by ρ, the equilibrium value, and
(
λ
[
qK(ηt)κ− 1

]
− ρ
)

replaces Rt − δ

as (8) holds when the pledgeability constraint does not bind. This equation reveals that bank return

on equity comes from two sources, entrepreneurs’ investment profit that drives credit demand,

and leverage, xt. From Proposition 6, qKt is increasing in ηt, and, from Proposition 10, xt is also
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increasing in ηt, which together imply that bank ROE is increasing in ηt. When the pledgeability

constraint binds (i.e., ηt > η̃ where η̃ is defined in Proposition 10), the next proposition shows that

bank ROE becomes decreasing in ηt. The proof is in Appendix A.

Proposition 11 (Bank ROE Cycle) For ηt < η̃, where η̃ is defined in Proposition 10, the pledge-

ability constraint does not bind, and we have dROE(ηt)
dηt

> 0. For ηt > η̃, we have dROE(ηt)
dηt

< 0.

Both bank leverage and return on equity are increasing in ηt (procyclical) when ηt is low and

decreasing in ηt (countercyclical) when ηt is high. Such hump-shaped dynamics have important

implications on credit cycles. For example, in low-ηt states where the equilibrium level of credit is

low (see Proposition 7), both bank ROE and leverage are low. A low ROE implies that the expected

growth rate of bank equity and the drift of ηt are low, and a low bank leverage implies that ηt is

not very responsive to shocks. As a result, once entering into low-ηt states (credit crunches), the

economy gets stuck there. Next, I characterize the credit boom-bust cycles through the law of

motion of ηt that in turn depend on the results discussed so far about how bank leverage and ROE.

Credit boom. Bank leverage and ROE dynamics in Proposition 10 and 11, respectively, have

critical implications on the long-run dynamics of the economy, i.e., the amount of time the econ-

omy spends in credit boom (high-ηt states) and crises (low-ηt states) as described by the stationary

distribution of ηt that is formally introduced in the next lemma. The proof is in Appendix A.

Lemma 8 (Stationary Distribution) The density function of stationary distribution, p (ηt), is solved

by the following ordinary differential equation (ODE):

µη (η) p(η)− 1

2

d

dη

(
ση (η)2 p(η)

)
= 0 , (27)

where µη (η) and ση (η) are defined in the law of motion of ηt given by (16).

The economy is stable near the upper boundary η where the level of credit provision is the

highest (see Proposition 7). According to Proposition 10, when firms’ pledgeability constraint

binds in high-ηt states (i.e., ηt > η̃), bank leverage tends to be low, which implies that ηt is
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insenstive to shocks (its diffusion is given by ση
t = (xt − 1) in (16). Therefore, the stationary

distribution density, p (ηt), has a local maximum at η. The local maximum of density implies that

the economy tends to spend a relatively large amount of time near η. The proof is in Appendix A.

Proposition 12 (Stable Credit Booms) There exists a constant ηB > η̃, where η̃ is defined in

Proposition 10, such that in the interval (ηB, η), the stationary density, p (ηt), is maximized at η.

Credit crunch. Credit crunches happen when ηt is low and near η where bankers pay the equity

issuance cost and recapitalize. In these low-ηt states, credit supply is inelastic (Proposition 5), and

credit demand is weak (Proposition 6), resulting in low levels of credit provision and investment

(Proposition 7). To clarify the intuitions about crisis dynamics, I first characterize how long it

takes to recover and then relate the long-run probability of crises to the dynamics of bank leverage

described in Proposition 10 and that of bank ROE in Proposition 11. I consider the most severe

crisis where ηt has fallen to its lower boundary η. The recovery time, g (η), is defined as the

expected time it takes for ηt to reach any value η > η from η, i.e., g (η) ≡ E
[
τ − t | ηt = η

]
,

where τ = min{s ≥ t : ηs ≥ η}. The proof of next lemma on recovery time is in Appendix A.

Lemma 9 (Recovery Time) The expected time to reach η from η, g (η), is solved by the ODE

1− g′ (η)µη (η)− ση (η)2

2
g′′ (η) = 0,

with the boundary conditions, g
(
η
)
= 0 and g′

(
η
)
= 0.

According to Proposition 11, when ηt is low, bank ROE is low, so the accumulation of bank

equity through retained earnings is slow, which already suggests that the economy tends to get

stuck in low-ηt states. Moreover, according to Proposition 10, bank leverage is low when ηt is low

so ηt is not very sensitive to shocks (see the law of motion (16)). A low leverage limits the impact

of both positive and negative shocks on ηt. However, this dampening effect is mainly relevant for

positive shocks, as the impact of negative shocks is already limited by the lower bound η, that is

negative shocks cannot push ηt down below η where bankers optimally pay the equity issuance

cost and recapitalize. Therefore, low leverage in low-ηt states mainly serves to dampen the impact

31



of positive shocks and thus contributes to stagnant credit crunches. In fact, the next proposition

shows that the lower bank leverage is, the more sluggish recovery is out of credit crunches.

Proposition 13 (Sluggish Recovery) The expected time to reach η from η, g(η) in Lemma 9, in

increasing and convex (quadratic) in η. Moreover, there exists a constant ηR > η such that, for

any η ∈
(
η, ηR

)
, a decrease in bank leverage at η leads to an increase in g(η).

The proof is in Appendix A. This proposition shows that at ηt = η, the expected time it

takes to reach η > η increases quadratically as the destination state becomes more distant. This

result offers a concrete description of the stagnant nature of crises in the model. Next, I show

that the recovery path is not only slow but also fragile. The economy recovers from a crisis if

bankers accumulate equity through retained earnings or experience a sequence of positive shocks

that increase ηt. According to Proposition 10, when ηt is small (< η̃), bank leverage is increasing

in ηt. Therefore, as ηt increases and drives up bank leverage, ηt becomes more sensitive to shocks

(the shock loading is ση
t = (xt − 1)σ in the law of motion (16)). The increase in shock sensitivity

implies that negative shocks can easily push the economy back to low-ηt states. In summary,

recovery from a crisis is slow, and the path is fragile due to leverage procyclicality. The next

proposition shows that the economy gets stuck in the low-ηt states. The proof is in Appendix A.

Proposition 14 (Stagnant Credit Crunch) There exists a constant ηC < η̃, where η̃ is defined in

Proposition 10, such that in the interval
[
η, ηC

)
, the stationary density, p(ηt), is maximized at η.

The economy tends to spend more time in credit booms (ηt near η) and credit crunches (ηt

near η) accordingly to Proposition 12 and 14, respectively, as there are two modes of the stationary

density at the two extreme values of ηt. A key force is the hump-shaped relationship between bank

leverage and ηt. A corollary of leverage procyclicality in low-ηt states and countercyclicality in

high-ηt states is that the economy spends relatively less time in the intermediate-ηt states where

bank leverage is high and the economy is very responsive to shocks. In other words, the transition

between high- and low-ηt states can be fairly swift. These results speak to the empirical findings on

the multimodality of macro and financial conditions (Adrian, Boyarchenko, and Giannone, 2021).
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4 Application: Policy Intervention

Since the Global Financial Crisis (GFC), governments around the world, including both fiscal au-

thorities and central banks, have intervened actively to sustain credit supply during major economic

downturns (Gertler and Kiyotaki, 2010). During the Covid-19 pandemic, not only the GFC-era

programs were reinstated, but new programs were introduced to provide credit directly to nonfi-

nancial firms, such as the Primary and Secondary Market Corporate Credit Facilities (PMCCF and

SMCCF) in the U.S. The model provides a new framework for understanding credit interventions.

To capture the design of credit intervention in practice, I consider the following policy. The

government lends lG(ηt) to entrepreneurs with lG(ηt) = 0 if ηt > ηG and lG(ηt) = ω0 − ω1ηt > 0

for ηt ≤ ηG where ω1 > 0—that is, the government intervenes if the private sector’s capacity to

supply credit, which depends on ηt, is below a threshold, and increases the scale of intervention as

ηt declines further.34 In line with the design of PMCCF and SMCCF and other programs, credit

is provided by the government at the market loan rate, Rt.35 Therefore, intervention essentially

shifts outward the credit supply curve: for any loan rate Rt, aggregate credit supply is the sum of

bank-supplied credit, ηt+(Rt−ρ− δ)/b(ηt), which is obtained from rearranging the supply curve

given by (20), and government-supplied credit, lG(ηt), i.e.,

lSt = ηt +
Rt − ρ− δ

b(ηt)︸ ︷︷ ︸
Bank credit

+ lG(ηt)︸ ︷︷ ︸
Gov. credit

. (28)

When ηt decreases and bank credit declines (see Proposition 5), lG(ηt) increases to supple-

ment credit supply at any Rt. In the numerical solution, the parameters of lG(ηt), such as ηG, ω0,

and ω1, are set in Appendix C to reflect the scale of intervention during the Covid-19 pandemic.

The goal is not a comprehensive quantitative assessment of credit policy but to illustrate theoreti-

34The threshold, ηG, is introduced in line with Section 13.3 of the Federal Reserve Act, which permits it in “unusual
and exigent circumstances” to make loans to the private sector. The statute makes clear that in normal times the Federal
Reserve is not permitted to take on private credit risk.

35For publicly traded bonds, the government can rely on market prices, e.g., PMCCF and SMCCF in the U.S., and
if a firm’s debt is not publicly traded, the government can lend alongside banks and rely on banks’ pricing of loans,
e.g., the Main Street Lending Program (MSLP) in the U.S. during the Covid-19 pandemic.
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cal mechanisms with reasonable parameter values. Finally, note that to focus on the credit-market

implications, I abstract away other forms of policy distortions: government lending is funded by a

lump-sum tax on households, and repayment is returned to households via a lump-sum transfer.

As previously discussed, the allocation problem in the economy is whether the households’

funds can be channeled to entrepreneurs who have investment opportunities. Banks can intermedi-

ate credit supply but are financially constrained, facing the equity issuance cost. Therefore, credit

intermediation by the government can potentially improve efficiency (Lucas, 2016).

Given the new credit supply curve and the credit demand curve that is still characterized by

Proposition 4, the Markov equilibrium can be similarly solved as in Section 3. Moreover, I compute

the social welfare at time t that is given by the present value of future consumption streams:

Wt = Et

[∫ ∞

s=t

e−ρ(s−t)(α− λls)Ksds

]
, (29)

where (α−λls)Ksds, the aggregate consumption at time s (≥ t), is the output αKsdt minus goods

used for creating new capital Kslsλds.36 Appendix D shows how to compute Wt: there exists a

function θ(·) such that Wt = θ(ηt)Kt, and θ(ηt) can be solved from a differential equation.

Figure 5 compares the laissez-faire economy and the economy under intervention. Typically,

endogenous variables are plotted against the state variable, ηt. To demonstrate the impact of credit

intervention across different phases of economic downturns, I use a monotone transformation of

ηt as the horizontal axis in each panel, so the x-axis is µK
t = λF (lt) − δ, the economic (capital)

growth rate, which is an increasing function of ηt.37 In each panel, the plot starts from a growth rate

of -4% and ends at 0%. Note that -4% is not the worst growth rate. In the laissez-faire economy,

the worst growth rate at ηt = η is -4.7%, while the worst growth rate is -4.4% under intervention.

It is already evident that intervention improves welfare by limiting the severity of credit crunch.

Panel A of Figure 5 compares welfare of the laissez-faire economy and that under interven-

tion across different phase of economic downturns.38 The percentage improvement from interven-

36As a reminder, λds fraction of firms’ investment succeed over ds while the rest turn out to be storage technology.
37Given credit lt, λdt fraction of investment creates new capital over dt, and δdt fraction of capital is destroyed.
38The laissez-faire economy is the economy with decreasing return-to-scale investment technology in Figure 4.
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Figure 5: Credit Intervention in Crises. In all four panels, the horizontal axis is the expected growth rate of the
economy, µ(ηt) = λF (lt)−δ, i.e., capital growth via the creation of new capital net off the expected capital destruction
rate, which is a monotonic (positive) transformation of state variable ηt. In each panel, the plot starts from the value
of ηt with µ(ηt) = −4% and ends at the value of ηt with µ(ηt) = 0%. Panel A compares welfare of the laissez-fiare
economy and that under intervention and reports the percentage improve by intervention. Panel B plots the expected
time it takes to reach different levels of µ(ηt) starting from the value of ηt that generates µ(ηt) = −4%. Panel C and
D report bank ROE and leverage, respectively, across different phases of a crisis (different values of µ(ηt)).

tion is greater when growth is weaker (and ηt is lower) because, by design, the scale of intervention

is larger when ηt is lower. Welfare is improved because the frictionless credit intermediation by

the government partially substitutes out the frictional intermediation by banks that face the equity

issuance cost. As shown in Proposition 5, the lower ηt is, the more inelastic and lower bankers’

supply of credit is as costly equity issuance becomes more imminent (i.e., ηt approaches η).

The result in Panel B of Figure 5 seems counterintuitive: government credit supply prolongs

the downturn. The figure plots the expected number of years it takes to reach different levels of

economic growth from the state of a severe credit crunch where the growth rate is -4%.39 In the

laissez-faire economy, it takes eight years to reach zero growth rate, while under credit intervention,

it takes nine years. Section 3 explains how the model generates stagnant credit crunches that take

39The computation of expected time to recovery involves solving a differential equation and follows Lemma 9.
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a long time to recover from, but why does government credit supply prolong credit crunches?

As long as government lending does not satiate entrepreneurs’ credit demand, bank lending is

needed for investment. Therefore, recovery requires the rebuild of bank equity, which in turn relies

on banks’ profits from lending. Intervention affects banks’ lending profits through two channels.

First, by shifting outward the supply curve, intervention pushes down the market-clearing loan

rate along the demand curve. This force reduces banks’ lending profits. Second, by making credit

cheaper across the recessionary states, intervention improves the credit-financed growth of capital

and thereby raises capital value. As shown in Proposition 4, a higher capital value encourages

entrepreneurs to build capital and thus shift their credit demand curve outward. This force increases

banks’ lending profits. The first force denominates in low ηt states in Panel C of Figure 5, so bank

ROE is negatively impacted by intervention, which slows down the rebuild of bank equity.

The last result is about its impact on bank leverage cyclicality and how such impact translates

into not only a sluggish recovery from crises but also a fragile one. Panel D of Figure 5 shows bank

leverage is more procyclical under intervention: bank leverage is lower under intervention when

ηt and economic growth are near the lowest, and as ηt increases and the economy recovers, bank

leverage becomes higher under intervention than the laissez-faire case. By reducing lending profits

in the low-ηt states, intervention dampens bankers’ incentive to maintain a high leverage. The next

proposition summarizes such policy-induced deleveraging. The proof is in Appendix A.

Proposition 15 (Policy-Induced Deleveraging) There exists a neighborhood of η (low-ηt states)

where, as credit intervention reduces the loan rate, Rt, it also decreases bank leverage, xt.

In Panel D of Figure 5, bank leverage under intervention rises above the laissez-faire case

as ηt increases and the economy recovers. In both economies, banks pay the issuance cost when

raising equity at the lower bound of ηt. To compensate the financing costs, banks must generate

sufficient profits. Under credit intervention, banks do so by raising leverage in high-ηt states where

lending profits are relatively high and reducing leverage in low-ηt states where lending profits

are low due to credit intervention. In other words, to sustain profits, banks shift their risk-taking

capacity towards high-ηt states, resulting in more procyclical leverage under credit intervention.
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The dynamics of bank leverage in Panel D of Figure 5 suggests that credit intervention not

only prolongs economic downturns, as shown in Panel B, but also makes recovery more fragile.

Panel B of figure 5 is about the average recovery path and does not reflect the build-up of fragility

along the path. A low bank leverage at the depth of a credit crunch suggests that the state variable,

ηt, is not sensitive to shocks and the economy is relatively stable in this region of low private-sector

credit capacity and low growth.40 As ηt increases and the economy recovers, bank leverage rises

faster under credit intervention, and the economy becomes increasingly more sensitive to shocks.

In summary, the comparison between the laissez-faire economy and the economy under in-

tervention shows the following results. First, intervention improves welfare. Second, interven-

tion, by reducing banks’ lending profits and slowing down the rebuild of bank equity, extends the

duration of credit crunches. Third, by amplifying the procyclicality of bank leverage along the

recovery path, intervention makes recovery more fragile. In the model, agents are risk-neutral. For

risk-averse agents, welfare may decrease due to intervention as it prolongs the downturns and ren-

ders recovery more fragile. This paper does not analyze optimal intervention, but the mechanism it

illustrates shows intervention can be harmful in more general settings where agents are risk-averse.

Admittedly, should the government satiates credit demand, providing so much credit that the

marginal value of entrepreneurs’ investment is zero and the first-best investment (given by Propo-

sition 1) is achieved, the economy would no longer need bank credit, and the fact that intervention

crowds out bank profits and slows down the rebuild of bank equity would be irrelevant. However,

it is unlikely that the government can overtake private-sector credit intermediaries as the sole credit

supplier, because in reality, the government faces constraints on its capacity to lend.

Discussion: banking regulations. Capital requirements and leverage regulations may mitigate

the problems caused by credit intervention. For example, regulations that limit bank leverage re-

duce leverage procyclicality along the recovery path, making recovery less shock-sensitive. This

force acts against the impact of credit intervention that amplifies intermediaries’ leverage pro-

cyclicality coming out of crises. However, forcing banks to keep leverage low also reduces their

expected return on equity and expected growth rate of net worth, which then slows down recovery.
40As a reminder, the diffusion or shock sensitivity in the law of motion of ηt given by (16) is (xt − 1)σ.
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5 Conclusion

In the model, crises originate on the credit-supply side: because financial intermediaries cannot be

frictionlessly recapitalized, shocks have persistent impact on their net worth and lending capacity.

In response, firms’ demand for credit that finances capital creation weakens, as they anticipate

tighter credit supply in the future that constrains capital growth. Credit-demand contraction re-

duces intermediaries’ profitability and slows their net-worth rebuild. Intermediaries’ investment

opportunities deteriorate when they become undercapitalized, which distinguishes the model from

those that also have intermediaries’ net worth as the state variable but rely on the fire-sale dynam-

ics.41 Credit-demand contraction during downturns is driven not by sentiment but expectations of

persistent credit-supply tightening. Crisis severity and duration are mutually reinforcing.

Two features of credit demand contribute to the emergence of two regimes (booms and crises)

with transitions depending on intermediaries’ leverage choice. The first feature is about how much

firms want to borrow, which is tied to their expectations of future credit availability and capital

growth. When intermediaries’ net worth is low, this force creates the comovement between inter-

mediaries’ net worth and lending profits. It locks the economy in crises and contributes to the pro-

cyclicality of intermediaries’ leverage, making recovery fragile. The second feature is about how

much firms can borrow. When intermediaries’ net worth is high and credit is abundant, firms hit

debt limits, which in turn constrains intermediaries’ asset expansion, making their leverage coun-

tercyclical. The hump-shaped leverage dynamics imply that booms and crises tend to be sticky and

transitions abrupt, because intermediaries’ leverage and shock sensitivity of their net worth—the

state variable—are highest when intermediaries’ net worth is at the intermediate levels.

41In the absence of asset fire sale, intermediaries’ investment opportunities also improve in crises through decreasing
return-to-scale: when intermediaries are undercapitalized, they lend less, so their marginal return from lending is
higher (e.g., Klimenko et al. (2016)). A related insight is also highlighted by Gersbach, Rochet, and Scheffel (2023).
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Internet Appendix
A Proofs

Proof of Lemma 1 and Proposition 4 (entrepreneur optimization). Entrepreneurs maximize
life-time utility, E

[∫ +∞
t=0

e−ρtdcEt

]
, subject to the following wealth dynamics:

dwt = −dcEt + µw
t wtdt+ σw

t wtdZt + (ŵt − wt) dNt,

where µw
t and σw

t are the drift and diffusion terms that will be elaborated later, dNt is the increment
of idiosyncratic Poisson process (dNt = 1 if investment creates new capital), and ŵt is the post-
Poisson wealth. I conjecture that the value function is linear in wealth wt: Vt = ζtwt, where ζt is
the marginal value of wealth, and in equilibrium, follows a diffusion process:

dζt = ζtµ
ζ
tdt+ ζtσ

ζ
t dZt,

where µζ
t and σζ

t are the drift and diffusion terms respectively. Note that ζt only depends on the
aggregate dynamics, so it does not jump at an individual entrepreneur’s Poisson shock.

Under this conjecture, the Hamilton-Jacobi-Bellman (HJB) equation is

ρVtdt = max
{qKt kt+dcEt≤wt, lt≤qKt }

dcEt − ζtdc
E
t +

{
wtζtµ

ζ
t + wtζtµ

w
t + wtζtσ

ζ
t σ

w
t

}
dt+ ζt [ŵt − wt] dt.

At any t, entrepreneurs allocate wealth between consumption and savings in the form of capital
ownership. Let ψt denote the cumulative Lagrange multiplier of the budget constraint, so at t, dψt

is the shadow price of qKt kt + dcEt ≤ wt. After deciding on capital ownership, kt, entrepreneurs
choose the amount of borrowing from the bank for each unit of capital subject to the pledgeability
constraint, lt ≤ qKt . Let ξt denote the cumulative value of Lagrange multiplier for the pledgeability
constraint, so at t, dξt is the shadow price of lt ≤ qKt .

In equilibrium, all entrepreneurs hold finite amount of capital, so they are indifferent between
consumption and saving. Thus, the marginal value of savings, ζt, is equal to one (i.e., the marginal
value of consumption), and, as a result, µζ

t and σζ
t are zero. The HJB equation is simplified under

µζ
t = 0 and σζ

t = 0, and is augmented with the constraints and multipliers:

ρVtdt = max
{qKt kt+dcEt≤wt,lt≤qKt }

µw
t wtdt+ λ [ŵt − wt] dt+

(
wt − qKt kt

)
dψt + kt

(
qKt − lt

)
dξt.

Given kt and lt, the wealth drift is
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µw
t wtdt = αktdt+ Et

(
qKt+dtkt+dt − qKt kt

)
− (Rt − δ) ltktdt,

and the wealth jump at the Poisson time is

ŵt − wt = qKt F (lt) kt − ltkt.

The first term in µw
t wtdt is the production flow from capital, and the second term is the appreci-

ation and depreciation from the stochastic destruction and potential reevaluation of capital value.
The loan will be repaid if capital survives; with probability δdt − σdZt, capital perishes and the
entrepreneur defaults on the bank loan. Therefore, the cost is [1− (δdt− σdZt)] (1 + dRtdt)− 1,
which in expectation is (Rt − δ). Second, consider the loan benefit. With probability λdt, the
investment creates new capital that generates a jump in wealth.

The optimality conditions for lt are: dξt ≥ 0 and equality holds if lt < qKt , and

− (Rt − δ) ktdt+
[
qKt F

′ (lt)− 1
]
ktλdt− ktdξt = 0,

Rearranging the equation and dividing both sides of the equation by ktdt, I obtain

Rt − δ = λ
[
qKt F

′ (lt)− 1
]
− dξt/dt.

Therefore, when the pledgeability constraint is not binding, dξt = 0, I obtain the optimality condi-
tion (8) in Lemma 1. When the pledgeability constraint binds, lt = qKt and it is possible that the
shadow price of pledgeability constraint is positive, i.e., dξt > 0 and Rt − δ < λ

[
qKt F

′ (lt)− 1
]

.

Proof of Lemma 2. Next, I continue from the derivation in the proof of Lemma 1 and Proposition
4 and solve the asset pricing equation (11) for capital. A fraction (δdt− σdZt) of capital is to be
destroyed, so the capital evolves as

kt+dt = kt − (δdt− σdZt) kt.

Given the equilibrium capital value dynamics, dqKt = qKt µ
K
t dt+ qKt σ

K
t dZt, I obtain

qKt+dtkt+dt − qKt kt = qKt kt
[
− (δdt− σdZt) + µK

t dt+ σK
t dZt + σσK

t dt
]

.

The optimality conditions for kt are: dψt ≥ 0 and equality holds if qKt kt + dcEt < wt, and

αdt+qKt
(
−δ + µK

t + σσK
t

)
dt−(Rt − δ) ltdt+

[
qKt F (lt)− lt

]
λdt−qKt dψt+

(
qKt − lt

)
dξt = 0.
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Substituting these optimality conditions into the HJB equation, I obtain

ρVtdt = wtdψt.

Because ζt = 1, I obtain Vt = wt, and dψt = ρdt. Note that
(
qKt − lt

)
dξt = 0 from the optimality

condition for lt. Substituting dψt = ρdt into the F.O.C. for kt and rearranging the equation, I obtain

qKt =
α− (Rt − δ) lt + λ

[
qKt F (lt)− lt

]
ρ− (µK

t − δ + σσK
t )

.

Proof of Proposition 1. In Equation (11), Rt − δ is replaced by ρ, the equilibrium effective loan
rate (i.e., the households’ discount rate). When lFB is a constant, the numerator of the right side
of (11) is constant and, thus, µK

t = 0 and σK
t = 0 and qKt = qKFB (constant) are consistent. When

qKt = qKFB is a constant, lFB is a constant. Therefore, there exists a first-best equilibrium where
lFB and qKFB are constant and given by (13) and (12), respectively.

Proof of Proposition 2. First, I show that when qBt and qKt are functions of ηt, the market-
clearing level of credit per unit of capital, lt, is also a function of ηt, which then implies that the
market-clearing loan rate, Rt, is a function of ηt. Moreover, lt being a function of ηt also implies
that bank leverage (loan-to-equity ratio), ltKt/Et = lt/ηt, is a function of ηt. Therefore, from the
law of motion of ηt given by (16) is autonomous (note that the interest rate offered by bank debt,
rt, is equal to ρ, households’ discount rate, in equilibrium). To show that lt is a function of ηt when
qBt and qKt are functions of ηt, consider two cases. If the pledgeability constraint binds, lt = qKt

and therefore is a function of ηt. If the pledgeability constraint does not bind, the market-clearing
condition given by (23) implies that lt is a function of ηt (note that b(ηt) is defined in (21)). In
summary, I have shown that when qBt and qKt are functions of ηt, the equilibrium loan amount, lt,
loan rate, Rt, and bank leverage, xt, are all functions of ηt, and therefore, ηt has an autonomous
law of motion.

Next, I show that when qBt and qKt are functions of ηt, the equation (11) for capital valuation
and bankers’ HJB equation (A.1), which can be simplified to (A.4), µB

t = ρ − ρ, constitute a
pair of ordinary differential equations (ODEs) for qK(ηt) and qB(ηt), i.e., a unique mapping from(
η, qB, qK , dq

B

dη
, dq

K

dη

)
to
(

d2qB

dη2
, d

2qK

dη2

)
. Therefore, the conjecture that qBt and qKt are functions of

ηt can be successful verified to be consistent with the equilibrium conditions, as qBt and qKt can be
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solved as functions of ηt via the ODE system.42 Instead of first derivatives, I work with elasticities
of
(
qB, qK

)
, ϵX = dqX/qX

dη/η
, X ∈ {B,K} to simplify expressions. By Itô’s lemma, I obtain

µX = ϵXµη +
1

2qX
(σηη)2

d2qX

dη2
, i.e.,

d2qX

dη2
= 2qX

(
µX − ϵXµη

)
(σηη)2

, X ∈ {B,K} .

I have shown that when qBt and qKt are functions of ηt, ηt has an autonomous law of motion, that
is the drift, µη, an diffusion, ση, are both functions of ηt. Thus, from (A.4), I obtain the first ODE.
The equation (11) for capital valuation implies that second ODE, because, first, I have sown that
when qBt and qKt are functions of ηt, the credit market-clearing price and quantity, Rt and lt, are
functions of ηt, and second, by Itô’s lemma, σK = ϵKση. There are two sets of boundary conditions
for this pair of ODEs. The first set contains the optimality conditions for bankers’ choices of equity
raising and consumption: ϵB(η) = −1, ϵB(η) = 0, qB(η) = 1 + χ, qB(η) = 1. These conditions
are discussed in further details in the proofs below that characterize bankers’ optimization.43 The
second set of boundary conditions include ϵK(η) = 0 and ϵK(η) = 0 that rule out arbitrage at the
reflecting boundaries η and η where the sign of dηt is predictable. Therefore, I obtain a total of six
boundaries conditions for the two second-order ODEs and two endogenous boundaries, η and η.

In summary, I have shown that qBt and qKt can be solved as functions of ηt and, given that qBt
and qKt are functions of ηt, lt, Rt, and xt are all functions of ηt and ηt has an autonomous law of
motion. Thus, a time-homogeneous Markov equilibrium exists.

Proof of Lemma 3, 4, and 7 and Proposition 3 and 5 (banker optimization). First, I derive
the law of motion of ηt give by (16). Banks’ equity have the same drift term, µE

t ,

µE
t ≡ rt + xt (Rt − δ − rt) dt ,

and the same diffusion term,
σE
t ≡ xtσ ,

of equity and their payout/issuance rates are the same dyt, so aggregating over banks, the law of
motion of aggregate bank equity Et is given by

dEt = µE
t Etdt+ σE

t EtdZt − dytEt.
42Equations (A.1) and (A.4), though appear later in the appendix, do not require that qBt and qKt are functions of ηt.
43These set of conditions are similar to those in Brunnermeier and Sannikov (2014) and Phelan (2016).
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Given the expected growth rate, λF (lt)− δ, which is the investment net of expected depreciation,
the aggregate capital stock, Kt, evolves as: dKt = [λF (lt)− δ]Ktdt + σKtdZt. By Itô’s lemma,
the ratio, ηt = Et

Kt
, has the following law of motion:

dηt =
1

Kt

dEt −
Et

K2
t

dKt +
1

K3
t

⟨dKt, dKt⟩ −
1

K2
t

⟨dEt, dKt⟩ ,

where ⟨dXt, dYt⟩ denotes the quadratic covariation of diffusion processes Xt and Yt, so I obtain
⟨dKt, dKt⟩ = σ2K2

t dt, and ⟨dEt, dKt⟩ = σE
t σEtKtdt. Dividing both sides by ηt, I obtain

dηt
ηt

=
dEt

Et

− dKt

Kt

+ σ2dt− σE
t σdt.

Substituting the law of motions of Et and Kt into the equation above, I obtain Equation (16).
Next, I solve the bankers’ optimization problem. Conjecture the bank’s value function is

linear in equity: vt = qBt et. In equilibrium, the marginal value of equity, qBt , evolves as follows

dqBt = qBt µ
B
t dt+ qBt σ

B
t dZt.

Let dyt denote dcBt /et, a consumption-to-wealth ratio. Under this conjecture, the HJB equation is

ρvtdt = max
dyt∈R

{(
1− qBt

)
I{dyt>0}etdyt +

(
qBt − 1− χ

)
I{dyt<0}et (−dyt)

}
+µB

t q
B
t etdt+max

xt≥1

{
rt + xt (Rt − δ − rt)− xtγ

B
t σ
}
qBt etdt .

where γBt = −σB
t . Dividing both sides by qBt et, we eliminate et in the HJB equation,

ρ = max
dyt∈R

{(
1− qBt

)
qBt

I{dyt>0}dyt +

(
qBt − 1− χ

)
qBt

I{dyt<0} (−dyt)
}

+µB
t +max

xt≥1

{
rt + xt (Rt − δ − rt)− xtγ

B
t σ
}
, (A.1)

which confirms the conjecture of linear value function.
When paying out dividend, the bankers receive 1 for consumption, but lose qBt . Only when

qBt ≤ 1, dyt > 0. When the bank issues equity, it incurs a dilution cost. From the existing
shareholders’ perspective, one dollar equity is sold to outside investors at a discount price qBt

1+χ
. To

raise (−dyt) et that is worth qBt (−dyt) et, the bank must issue (1+χ)(−dyt)et
qBt

shares, and thus, the

existing shareholders lose value of qBt
(1+χ)(−dyt)et

qBt
= (1 + χ) (−dyt) et. Therefore, the bank raises
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equity only if qBt ≥ 1 + χ. the marginal value of equity, qBt , is a function of the state variable ηt.
Bankers’ payout and issuance policies imply that qBt ∈ [1, 1 + χ]; otherwise, bankers will pay out
or issue an infinite amount. Let η denote the state where qBt = 1+ χ, and η denote the state where
qBt = 1. It must hold that η < η and ηt ∈

[
η, η
]

because payout moves ηt at η upward and issuance
moves ηt downward at η. The amounts of issuance at η and payout at η exactly offset any variation
in ηt that would otherwise cause ηt to move beyond the two reflecting boundaries η and η.

The optimality of dyt also require that bank owners’ value cannot be further improved at the
boundaries.44 The value of bank equity is qBt Et = qBt ηtKt where Kt is not affected by dyt. At the

issuance boundary η,
d(qBt ηt)

dηt
= 0, which is equivalent to

ϵBt = −1 , (A.2)

guarantees the marginal impact of issuance on the value of existing shares is zero. At the payout

boundary η,
d(qBt ηt)

dηt
= 1, which is equivalent to

ϵBt = 0 , (A.3)

or dqB(ηt)
dηt

= 0, guarantees the value of equity declines exactly by the amount of dividends paid out.
If these conditions are violated, bankers would adjust the timing of issuance and payout given the
reflection of ηt, inconsistent with η and η being the issuance and payout boundaries, respectively.

From the HJB equation, the optimality condition for bank leverage xt is:

Rt − δ − rt − γBt σ ≤ 0,

which is Equation (18).45 The result bt = 0 follows from dqB(ηt)
dηt

= 0 at η.
Substituting the optimality conditions for payout/issuance, dyt, and leverage, xt, and rt = ρ,

the households’ optimality condition for holding deposits, into the HJB equation, I obtain

µB
t = ρ− ρ ≡ ι. (A.4)

Next, I prove ϵBt ∈ [−1, 0], dϵBt
dηt

> 0, and
d

(
− ϵBt

ηt

)
dηt

< 0 (i.e., dbt
dηt

< 0 in Proposition 5).
ϵBt ∈ [−1, 0] and ϵBt monotonically increases in ηt imply: (1) at any ηt ∈

[
η, η
)
, ϵBt < 0 and qBt is

44See also Brunnermeier and Sannikov (2014) and Phelan (2016) for similar conditions.
45Note that xt > 1, i.e., bankers borrow, because bankers are more impatient than households (ρ > ρ). Therefore,

the equality always holds in equilibrium.
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decreasing in ηt (in Lemma 3); (2) bt > 0 in
[
η, η
)

and bt = 0 at η (in Proposition 3).
By definition, ϵBt =

dqBt
dηt

ηt
qBt

, so I obtain

ηt
dϵBt
dηt

=
d2qBt
dη2t

η2t
qBt

−
(
dqBt
dηt

ηt
qBt

)2

+
dqBt
dηt

ηt
qBt
.

Then using Itô’s lemma on µB
t , I obtain d2qBt

dη2t

η2t
qBt

= 2

(ση
t )

2

(
µB
t − ϵBt µ

η
t

)
. Substituting out d2qBt

dη2t

η2t
qBt

using this expression and dqBt
dηt

ηt
qBt

by ϵBt , I obtain

ηt
dϵBt
dηt

=
2

(ση
t )

2

(
µB
t − ϵBt µ

η
t

)
−
(
ϵBt
)2

+ ϵBt . (A.5)

Given the optimality condition for bankers’ choice of xt, i.e., Rt − δ − rt = γBt σ and the
equilibrium deposit rate rt = ρ, µη

t can be written as

µη
t = ρ+ xtγ

B
t σ − [λF (lt)− δ]− ση

t σ.

Note that ση
t = xtσ − σ, so

µη
t = ρ− [λF (lt)− δ] + γBt σ

η
t + γBt σ − ση

t σ.

Substituting γBt = −ϵBt ση
t (from Itô’s lemma) into the expression above, I obtain

µη
t = ρ− [λF (lt)− δ]− ϵBt (ση

t )
2 −

(
ϵBt + 1

)
ση
t σ. (A.6)

On the right side of Equation (A.5) substituting out µη
t using (A.6), I obtain

ηt
dϵBt
dηt

=
2

(ση
t )

2

(
µB
t − ϵBt µ

η
t

)
−
(
ϵBt
)2

+ ϵBt

=
2µB

t − 2ϵBt {ρ− [λF (lt)− δ]}
(ση

t )
2 + 2

(
ϵBt
)2

+
2ϵBt

(
ϵBt + 1

)
σ

ση
t

−
(
ϵBt
)2

+ ϵBt .

Note that ρ − [λF (lt)− δ] > σ2

2
due to the parameter restriction ρ > λmax {F (l)} − δ + σ2

2
.

Therefore, substituting ρ− [λF (lt)− δ] by σ2

2
on the right side and simplifying it, I obtain

ηt
dϵBt
dηt

=
2

(ση
t )

2

(
µB
t − ϵBt µ

η
t

)
−
(
ϵBt
)2

+ ϵBt ≥ 2µB
t − ϵBt σ

2

(ση
t )

2 +
(
ϵBt
)2

+
2ϵBt

(
ϵBt + 1

)
σ

ση
t

+ ϵBt .
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With ση
t = xtσ − σ, the inequality can be further simplified to

ηt
dϵBt
dηt

≥ 2µB
t

(ση
t )

2 − σ2

(ση
t )

2

[
−
((
ϵBt
)2

+ ϵBt

)
(xt − 1)2 − 2

((
ϵBt
)2

+ ϵBt

)
(xt − 1) + ϵBt

]
. (A.7)

A sufficient condition for dϵBt
dηt

> 0 is that on the right side, the expression in square bracket,

−
((
ϵBt
)2

+ ϵBt

)
(xt − 1)2 − 2

((
ϵBt
)2

+ ϵBt

)
(xt − 1) + ϵBt ,

is non-positive. The expression is a quadratic form in (xt − 1). As a quadratic form of (xt − 1), it
achieves the maximum at xt − 1 = −1, i.e., xt = 0, and for xt > 0, this quadratic form decreases
in xt. Its value at xt = 0 is

(
ϵBt
)2

+ 2ϵBt . Since xt > 0, I obtain(
ϵBt
)2

+ 2ϵBt > −
((
ϵBt
)2

+ ϵBt

)
(xt − 1)2 − 2

((
ϵBt
)2

+ ϵBt

)
(xt − 1) + ϵBt ,

To show the quadratic form non-positive, it is sufficient to show its upper bound
(
ϵBt
)2

+ 2ϵBt ≤ 0,

which requires ϵBt ∈ [−2, 0]. If ϵBt ∈ [−2, 0], −
((
ϵBt
)2

+ ϵBt

)
(xt − 1)2−2

((
ϵBt
)2

+ ϵBt

)
(xt − 1)+

ϵBt ≤
(
ϵBt
)2

+ 2ϵBt ≤ 0, so Equation (A.7) implies that ηt
dϵBt
dηt

≥ 2µB
t

(ση
t )

2 , and from Equation (A.4),

µB = ι, so ηt
dϵBt
dηt

≥ 2ι

(ση
t )

2 > 0, i.e., dϵBt
dηt

> 0. Therefore, to prove dϵBt
dηt

> 0, the key is to prove

ϵBt ∈ [−2, 0]. Next, I will prove
d

(
− ϵBt

ηt

)
dηt

< 0 in Proposition 5, and in the process, prove that

ϵBt ∈ [−1, 0] ⊂ [−2, 0] and thus dϵBt
dηt

> 0.

By definition, ϵBt
ηt

=
dqBt
dηt

1
qBt

, so

d
(
− ϵBt

ηt

)
dηt

=
d
(

dqBt
dηt

1
qBt

)
dηt

=
d2qBt
dη2t

1

qBt
−
(
dqBt
dηt

1

qBt

)2

=
d2qBt
dη2t

1

qBt
−
(
ϵBt
ηt

)2

. (A.8)

Similarly as before, using Itô’s lemma, I obtain d2qBt
dη2t

1
qBt

= 2

(ση
t )

2
η2t

(
µB
t − ϵBt µ

η
t

)
. Substituting out

d2qBt
dη2t

1
qBt

with this expression and multiplying both sides of (A.8) by η2t , I obtain

d
(

ϵBt
ηt

)
dηt

η2t =
d
(

dqBt
dηt

1
qBt

)
dηt

η2t =
2µB

t

(ση
t )

2 − 2ϵBt
(ση

t )
2µ

η
t −

(
ϵBt
)2

(A.9)

Therefore, to prove
d

(
dqBt
dηt

1

qBt

)
dηt

> 0, it is equivalent to prove the right side is positive.
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On the right side of (A.9) substituting out µη
t using Equation (A.6), I obtain

2µB
t

(ση
t )

2−
2ϵBt
(ση

t )
2µ

η
t−
(
ϵBt
)2 ≥ 2µB

t

(ση
t )

2−
2ϵBt
(ση

t )
2 {ρ− [λF (lt)− δ]}+2

(
ϵBt
)2
+
2ϵBt

(
ϵBt + 1

)
σ

ση
t

−
(
ϵBt
)2
.

(A.10)
Note that ρ − [λF (lt)− δ] > σ2

2
due to the parameter restriction ρ > λmax {F (l)} − δ + σ2

2
.

Therefore, substituting ρ− [λF (lt)− δ] by σ2

2
on the right side and simplifying it, I obtain

d
(

ϵBt
ηt

)
dηt

η2t =
2µB

t

(ση
t )

2 − 2ϵBt
(ση

t )
2µ

η
t −

(
ϵBt
)2 ≥ 2µB

t

(ση
t )

2 − ϵBt σ
2

(ση
t )

2 +
(
ϵBt
)2

+
2ϵBt

(
ϵBt + 1

)
σ

ση
t

. (A.11)

With ση
t = xtσ − σ, the right side can be simplified, so I obtain

d
(

ϵBt
ηt

)
dηt

η2t ≥ 2µB
t

(ση
t )

2 − σ2

(ση
t )

2

[
−
(
ϵBt
)2
x2t +

(
ϵBt
)2 − 2ϵBt xt + 3ϵBt

]
.

To prove that the right side is positive, I analyze the quadratic form −
(
ϵBt
)2
x2t +

(
ϵBt
)2 −

2ϵBt xt + 3ϵBt . This quadratic function of xt achieves its maximum at xt =
2ϵBt

−2(ϵBt )
2 = − 1

ϵBt
. The

maximum is
(
ϵBt
)2

+ 3ϵBt + 1, which increases in ϵBt for ϵBt > −3
2
. Given µB

t = ι (Equation (A.4))

and the parameter restriction ι > σ2

2
, I obtain

d(ϵBt /ηt)
dηt

> 0 as long as
(
ϵBt
)2

+ 3ϵBt + 1 is less or
equal to one. At η, ϵBt = −1 and

(
ϵBt
)2

+ 3ϵBt + 1 = −1, so the quadratic form is negative and

I obtain
d(ϵBt /ηt)

dηt
> 0 at η. As ηt increases from η, the quadratic form is less or equal to one and

d(ϵBt /ηt)
dηt

> 0 as long as ϵBt
ηt

stays non-positive (i.e, ϵBt ≤ 0). Next, I will prove ϵBt ≤ 0 for any ηt by
contradiction, and thereby, conclude that as ηt increases from η,

(
ϵBt
)2

+ 3ϵBt + 1 ≤ 1.
Let η̃ denote the lowest value of ηt at which ϵBt

ηt
> 0 and ϵBt > 0. Since ϵBt = 0 and ϵBt

ηt
= 0

at η, so there must exist a state η̂t ∈ (η̃t, η) where ϵBt
ηt
> 0 and

d(ϵBt /ηt)
dηt

< 0 so that ϵBt
ηt

can decrease
from positive to zero eventually. Equation (A.11) and (A.4) (µB

t = ι) imply that at this state η̂t,

2ι

(ση
t )

2 − σ2

(ση
t )

2

[
−
(
ϵBt
)2
x2t +

(
ϵBt
)2 − 2ϵBt xt + 3ϵBt

]
< 0,

which in turn implies that(
ϵBt
)2

+ 3ϵBt + 1 ≥ −
(
ϵBt
)2
x2t +

(
ϵBt
)2 − 2ϵBt xt + 3ϵBt >

2ι

σ2
.
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This inequality implies that (
ϵBt
)2

+ 3ϵBt + 1− 2ι

σ2
> 0.

The left side is positive if and only if ϵBt <
−3−

√
5+4 2ι

σ2

2
or ϵBt >

−3+
√

5+4 2ι
σ2

2
. Since ϵBt > 0 at η̂t, the

former case is relevant. Note that because of the parameter restriction 2ι
σ2 > 1,

−3+
√

5+4 2ι
σ2

2
> 0 is

a positive constant. Therefore, at states where
d(ϵBt /ηt)

dηt
< 0, I obtain ϵBt >

−3+
√

5+4 2ι
σ2

2
> 0. Once

ϵBt
ηt

increases above zero, ϵBt is bounded below by
−3+

√
5+4 2ι

σ2

2
and thus can never fall to zero at η,

which violates the boundary condition at η. Therefore, there cannot exist a state η̃ where ϵBt
ηt
> 0,

so ϵBt ≤ 0 – as ϵBt increases from −1 at η, it never reaches above zero.
Given that ϵBt ∈ [−1, 0], I obtain

−
(
ϵBt
)2
x2t +

(
ϵBt
)2 − 2ϵBt xt + 3ϵBt ≤

(
ϵBt
)2

+ 3ϵBt + 1 ≤ 1, and

d
(

ϵBt
ηt

)
dηt

η2t ≥ 2µB
t

(ση
t )

2 − σ2

(ση
t )

2

[
−
(
ϵBt
)2
x2t +

(
ϵBt
)2 − 2ϵBt xt + 3ϵBt

]
≥ 2ι− σ2

(ση
t )

2 > 0. (A.12)

I have proven ϵBt ∈ [−1, 0], which implies dϵBt
dηt

> 0 as previously analyzed, and
d

(
ϵBt
ηt

)
dηt

> 0.

Proof of Lemma 5. Please refer to the main text.

Proof of Proposition 6. At η and η, dqK(ηt)
dηt

= 0 is from the boundary condition required to rule
out arbitrage opportunities. η and η are reflecting boundaries, so the variation of ηt is one-sided
and dqK(ηt)

dηt
̸= 0 implies certain profits.

Next, I prove dqKt
dηt

> 0 for ηt ∈
(
η, η
)
. Rearranging the optimality condition (11) for kt, I

obtain
qKt
(
ρ+ δ − µK

t − σK
t σ
)
= α + λ

[
qKt F (lt)− lt

]
− (Rt − δ) lt. (A.13)

Note that the optimality condition for lt in Lemma 1 implies that, when the pledgeability constraint
is binding, the derivative of λ

[
qKt F (lt)− lt

]
− (Rt − δ) lt with respect to lt is non-negative, de-

noted by ξt (i.e., the shadow price of pledgeability constraint), and, when the pledgeability con-
straint is not binding, the derivative of λ

[
qKt F (lt)− lt

]
− (Rt − δ) lt with respect to lt is zero (i.e.,

ξt = 0). Differentiating both sides with respect to ηt, I obtain

dqKt
dηt

(ρ− λF (lt) + δ)− dqKt
dηt

µK
t − dqKt

dηt
σK
t σ − qKt

dµK
t

dηt
− qKt σ

dσK
t

dηt
= −lt

dRt

dηt
+ ξt. (A.14)
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Next, I examine the terms on the left side. First, given that

µK
t =

1

2

d2qKt
dη2t

1

qKt
(ση

t ηt)
2 +

dqKt
dηt

1

qKt
(µη

t ηt) ,

I obtain

dµK
t

dηt
=
1

2

d3qKt
dη3t

1

qKt
(ση

t ηt)
2 − 1

2

d2qKt
dη2t

dqKt
dηt

1

(qKt )
2 (σ

η
t ηt)

2 +
1

2

d2qKt
dη2t

1

qKt

d (ση
t ηt)

2

dηt

+
d2qKt
dη2t

1

qKt
(µη

t ηt)−
(
dqKt
dηt

)2
1

(qKt )
2 (µ

η
t ηt) +

dqKt
dηt

1

qKt

d (µη
t ηt)

dηt
.

Then, from σK
t =

dqKt
dηt

1
qKt

(ση
t ηt), I obtain

dσK
t

dηt
=
d2qKt
dη2t

1

qKt
(ση

t ηt)−
(
dqKt
dηt

)2
1

(qKt )
2 (σ

η
t ηt) +

dqKt
dηt

1

qKt

d (ση
t ηt)

dηt
.

Substituting these expressions into (A.14) and simplifying it, I obtain

dqKt
dηt

(ρ− λF (lt) + δ)− 1

2

d3qKt
dη3t

(ση
t ηt)

2 − 1

2

d2qKt
dη2t

d (ση
t ηt)

2

dηt
− d2qKt

dη2t
(µη

t ηt)−
dqKt
dηt

d (µη
t ηt)

dηt

− d2qKt
dη2t

(ση
t ηt)σ − dqKt

dηt

d (ση
t ηt)

dηt
σ = −lt

dRt

dηt
+ ξt .

To simplify the notation, define zt ≡ dqKt
dηt

, so z′t ≡ d2qKt
dη2t

and z′′t ≡ d3qKt
dη3t

. Moreover, define

ut = (ρ− λF (lt) + δ) − d(µη
t ηt)

dηt
− d(ση

t ηt)
dηt

σ, σ̂t = ση
t ηt, and µ̂t = µη

t ηt + (ση
t ηt)σ + 1

2

d(ση
t ηt)

2

dηt
.

Substituting this new notations into the equation above, I obtain

1

2
σ̂2
t z

′′
t + µ̂tz

′
t − utzt +

(
−lt

dRt

dηt
+ ξt

)
= 0. (A.15)

Given s ≥ t, define

ẑs = e−
∫ s
τ=t uτdτzs +

∫ s

j=t

e−
∫ j
τ=t uτdτ

(
−lj

dRj

dηj
+ ξt

)
dj.

Equation (A.15) implies that ẑs is a martingale. Let T denote the first time after t when ηt hits
either the upper or lower reflecting boundary, i.e., T = min

{
s ≥ t : ηs ∈

{
η, η
}}

. Therefore,

zt = ẑt = Et [ẑT ] ,
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so, because the boundary conditions imply that zT = 0,

dqKt
dηt

= zt =Et

[
e−

∫ T
τ=t uτdτzT +

∫ T

j=t

e−
∫ j
τ=t uτdτ

(
−lj

dRj

dηj
+ ξt

)
dj

]
=Et

[∫ T

j=t

e−
∫ j
τ=t uτdτ

(
−lj

dRj

dηj
+ ξt

)
dj

]
.46 (A.16)

Next, I use this expression of dqKt
dηt

to prove dqKt
dηt

> 0 in
(
η, η
)

by contradiction.
The investment function, F (·), is a concave function. In the following, I consider a strictly

concave F (·) and then a linear F (·). Differentiating the credit demand equation in Lemma 1, I
obtain

dRt

dηt
= λ

dqKt
dηt

F ′ (lt) + λqKt F
′′ (lt)

dlt
dηt

. (A.17)

Differentiating this credit supply equation (20) and rearranging the equation, I obtain

dlt
dηt

=
1

σ2bt

dRt

dηt
− dbt
dηt

1

bt
(lt − ηt) + 1.

Using this expression to substitute out dlt
dηt

in Equation (A.17), I obtain

dRt

dηt
=
λ

dqKt
dηt
F ′ (lt) + λqKt F

′′ (lt) + λqKt F
′′ (lt)

(
− dbt

dηt
1
bt

)
(lt − ηt)

1− λqKt F
′′ (lt)

1
σ2bt

. (A.18)

Because F ′′ < 0 and bt > 0 for ηt ∈
(
η, η
)

(Proposition 3), the denominator is positive. Because
F ′′ < 0, the second term in the numerator is negative. Because dbt

dηt
< 0 (Proposition 5) and

lt − ηt = (xt − 1) ηt > 0, the last term in the numerator is negative. Suppose dqKt
dηt

≤ 0. Then the
first term in the numerator is negative, so dRt

ηt
< 0, which, according to (A.16), implies dRt

ηt
> 0.

This is a contradiction. Hence, I have proved that dqKt
dηt

> 0 in
(
η, η
)

under F ′′ < 0.
Next, consider a linear F (·) (i.e., F (·) in Section 3.4 with F ′ (lt) = κ). From the optimality

condition on lt,
dRt

dηt
= λ

dqKt
dηt

κ. (A.19)

Suppose dqKt
dηt

≤ 0 and I will show contradiction. Then dRt

dηt
≤ 0 and, from (A.16), dqKt

dηt
≥ 0.

Therefore, dqKt
dηt

= 0 and qKt is a constant. Using (8) to substitute out Rt − δ in (A.13), I obtain

qK (ρ+ δ) = α + λ
[
qKF (lt)− lt

]
− λ

[
qKκ− 1

]
lt , (A.20)
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where, because qK is a constant, µK
t and σK

t are substituted by zeros. Therefore, lt is constant
and, thus, (8) implies that Rt is constant. With both lt and Rt being constant, (20) implies that bt
increases in ηt, which contradicts Proposition 5. Therefore, dqKt

dηt
> 0.

Proof of Proposition 7. The investment function F (·) is concave. I will first consider the case
of strictly concave F (·) and then the case of linear F (·). First, I prove the results under F ′′(·) < 0.
Differentiating the credit demand equation in Lemma 1,

dRt

dηt
= λ

dqKt
dηt

F ′ (lt) + λqKt F
′′ (lt)

dlt
dηt

. (A.21)

Differentiating Equation (20), I obtain

dlt
dηt

=
1

σ2bt

dRt

dηt
− dbt
dηt

1

bt
(lt − ηt) + 1.

Using this expression to substitute out dRt

dηt
in Equation (A.21), I obtain

dlt
dηt

=
1

σ2bt

[
λ
dqKt
dηt

F ′ (lt) + λqKt F
′′ (lt)

dlt
dηt

]
− dbt
dηt

1

bt
(lt − ηt) + 1.

Rearranging this equation, I obtain

dlt
dηt

=

λ
σ2bt

dqKt
dηt
F ′ (lt)− dbt

dηt
1
bt
(lt − ηt) + 1

1− λ
σ2bt

qKt F
′′ (lt)

> 0 . (A.22)

At any ηt < η because in the denominator, F ′′ (lt) < 0 and bt > 0 at ηt < η (Proposition
3), and in numerator, dqKt

dηt
≥ 0 (Proposition 6), F ′ (lt) > 0, and dbt

dηt
< 0 at ηt < η. At η,

λ
[
qKt F

′ (lt)− 1
]
= ρ, so lt increases in ηt because qKt increases in ηt and F (·) is concave.

Next, I prove the results under F ′′(·) = 0 (i.e., for linear F (·)). From (8) and dqKt
dηt

≥ 0

(Proposition 6), I obtain dRt

dηt
≥ 0. In (20), the left side increases in ηt, while, on the right side, bt

decreases in ηt, so it must be that lt increases in ηt.

Lemma A.1 Given the equation

y =
α +H (y)

x
, (A.23)

dy
dx
< 0 for x > 0 if H (y) is an increasing function and H ′ (y) < x.

The proof of Lemma A.1 is as follows. Taking derivative with respect to x on both sides of the
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equation and rearranging the equation, I obtain that, if H ′ (y) < x,

dy

dx
= − y

x−H ′ (y)
< 0 . (A.24)

Proof of Proposition 8. Because dqKt
dηt

> 0 (Proposition 6), proving that qKt < qKFB in
[
η, η
)

and
qKt ≤ qKFB at η is equivalent to just proving qKt ≤ qKFB at η. Because ϵBt = 0 at η (boundary
condition), Rt − δ = ρ at ηt = η (see (20)). Therefore, from (11), at ηt = η, the value of capital is
given by

qKt =
α− ρlt + λ

[
qKt F (lt)− lt

]
ρ+ δ − (µK

t + σσK
t )

. (A.25)

From (12),

qKFB =
α− ρlFB + λ

[
qKFBF (lFB)− lFB

]
ρ+ δ

. (A.26)

By Itô’s lemma,

µK
t =

dqKt
dηt

1

qKt
(µη

t ηt) +
1

2

d2qKt
dη2t

1

qKt
(ση

t ηt)
2 (A.27)

Next, I prove that µK
t ≤ 0 at ηt = η. The first term is zero because dqKt

dηt
= 0 at ηt = η (boundary

condition). I show that the second term is non-positive (i.e., d2qKt
dη2t

≤ 0 at ηt = η). There exists an

increasing sequence of {ηn}+∞
n=1 such that lim

n→∞
ηn = η and, ∀n, d2qKt

dη2t
< 0 at ηn. This sequence can

be constructed recursively. Given a small number ϵ1, there exists at least one η1 ∈ [η − ϵ1, η) such
that d2qKt

dη2t
< 0 at η1, because dqKt

dηt
> 0 in [η − ϵ1, η) (Proposition 6) and dqKt

dηt
= 0 at η. Next, for any

integer n > 1, given ϵn such that η− ϵn > ηn−1, there exists at least one ηn ∈ [η − ϵn, η) such that
d2qKt
dη2t

< 0 at ηn, again because dqKt
dηt

> 0 in [η − ϵn, η) (Proposition 6) and dqKt
dηt

= 0 at η. Note that,

by construction, ηn ≥ η − ϵn > ηn−1. As long as d2qKt
dη2t

is a continuous function of ηt, lim
n→∞

ηn = η

and, ∀n, d2qKt
dη2t

< 0 at ηn together imply that d2qKt
dη2t

≤ 0 at the limit η; otherwise, there exists a N

(sufficiently large) such that, ∀n > N , d2qKt
dη2t

> 0 at ηn (which is in a small neighbourhood of η,
contradicting the definition of {ηn}+∞

n=1.
By Itô’s lemma,

σK
t =

dqKt
dηt

1

qKt
(ση

t ηt) , (A.28)

which is zero at ηt = η because dqKt
dηt

= 0 (boundary condition). Given µK
t ≤ 0 and σK

t = 0, the
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denominator of qK (η) is greater than or equal to the denominator of qKFB.
I apply Lemma A.1 this result to comparing two values of y, qKt and qKFB, that correspond,

respectively, to two values of x, ρ+ δ −
(
µK
t + σσK

t

)
and ρ+ δ, with

H (y) = max
l

−ρl + λ [yF (l)− l] . (A.29)

By the envelope theorem, I obtain
H ′ (y) = λF (l) , (A.30)

where l is the optimal solution. Using (2), i.e., Parameter Restriction I, and the previously proved
µK
t ≤ 0 and σK

t = 0, I obtain

H ′ (y) < ρ+ δ ≤ ρ+ δ −
(
µK
t + σσK

t

)
. (A.31)

Therefore, from Lemma A.1, ρ+ δ ≤ ρ+ δ −
(
µK
t + σσK

t

)
implies qKt ≤ qKFB at η. According to

Proposition 6, qKt ≤ qKFB at η implies qKt < qKFB in
[
η, η
)
.

Proof of Proposition 9. The investment function F (·) is concave. I will first consider the case
of strictly concave F (·) and then the case of linear F (·). Under F ′′ < 0, the results in Proposition
8 that qKt < qKFB in

[
η, η
)

and, at η, qKt ≤ qKFB implies that l∗t < lFB (l∗t defined in (22) and lFB

defined in (13)) in
[
η, η
)

and, at η, l∗t ≤ lFB. In the main text, I show that lt < l∗ in
[
η, η
)

and,
at η, lt = l∗t without the pledgeability constraint. In the presence of the pledgeability constraint,
lt ≤ l∗t at η. Next, I consider linear F (l) = κl. Under λ(qKFBκ − 1) > ρ (implied by the
parameter condition λ( ακ

ρ+δ
− 1) > ρ, qKt ≥ ακ

ρ+δ
in Proposition A.1, and qKFB > qKt in Proposition

8)), I obtain lFB = l. Since l > qKFB and qKFB ≥ qKt (Proposition 8), we know that when the
pledgeability constraint binds, lt = qKt < l = lFB. When the pledgeability constraint does not
bind, lt < qKt ≤ qKFB < l = lFB.

Proof of Lemma 6. Please refer to the main text.

Proof of Proposition 10. In the region where the entrepreneurs’ pledgeability constraint does
not bind, xt is given by (24) and, as discussed in the main text, xt is increasing in ηt. I characterize
the range of ηt where the pledgeability constraint binds and how bank leverage behaves in this
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region. Lemma 3 shows that dqB(ηt)/dηt = 0 at ηt = η, the upper boundary where bankers are
not financially constrained and decides to consume rather than retain equity. Therefore, when ηt
increases to a sufficiently high level and approaches η, ϵBt monotonically declines zero, implying
that xt, given by (24), approaches infinity. Note that bank lending per unit of capital is lt =

xtEt/Kt = xtηt. Therefore, as ηt approaches η driving xt to infinity, we have lt going to infinity
as well, which violates the pledgeability constraint lt ≤ qKt .47 Therefore, the solution of xt given
by (24) when the pledgeability constraint does not bind cannot hold when ηt is sufficiently close
to η and −ϵB(ηt) in the denominator is close to zero; in other words, the pledgeability constraint
must bind when ηt is close to η, so we have lt = qKt (i.e., xt =

qKt
ηt

) near η and the pledgeability

constraint binds. Finally I show xt is decreasing in ηt near η. From Proposition 6, dqK(η)
dηt

= 0, so,
when ηt is close to η, the numerator of xt in (25) is increasing at a slower rate than the denominator,
so xt is decreasing in ηt.

Proof of Proposition 11. When the pledgeability constraint binds, bank ROE is solved by sub-
stituting out Rt − δ − rt with γBt σ (see (18), bankers’ optimality condition) and, in turn, γBt with
−ϵBt (xt − 1)σ (see (19)):

ROEt = rt + (Rt − δ − rt)xt = ρ+ σ2
(
−ϵBt

)
(xt − 1)xt (A.32)

From Lemma 7, ϵBt increases in ηt. From Proposition 10, when ηt is sufficiently large, xt decreases
in ηt, which implies the quadratic form (xt − 1)xt decreases in ηt because xt > 1. Therefore, bank
ROE decreases in ηt when entrepreneurs’ pledgeability constraint binds and ηt is sufficiently large.

Proof of Lemma 8. Following Brunnermeier and Sannikov (2014), I derive the stationary prob-
ability density. Probability density of ηt at time t, p (η, t), has Kolmogorov forward equation

∂

∂t
p (η, t) = − ∂

∂η
(ηµη (η) p (η, t)) +

1

2

∂2

∂η2
(
η2ση (η)2 p (η, t)

)
.

Note that in a Markov equilibrium, µη
t and ση

t are functions of ηt. A stationary density is a solution
to the forward equation that does not vary with time (i.e. ∂

∂t
p (η, t) = 0). So I suppress the time

variable, and denote stationary density as p (η). Integrating the forward equation over η, p (η)

47Capital value, qKt = qK (ηt), is continuous and differentiable function of ηt ∈
[
η, η
]

according to Proposition 8.
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solves the following first-order ordinary differential equation within the two reflecting boundaries:

0 = C − ηµη (η) p (η) +
1

2

d

dη

(
η2ση (η)2 p (η)

)
, η ∈

[
η, η
]

.

The integration constantC is zero because of the reflecting boundaries. The boundary condition for
the equation is the requirement that probability density is integrated to one (i.e.

∫ η

η
p (η) dη = 1).

Proof of Proposition 12. At η, I use (18) and (19) to substituteR (η)−δ−ρwith −ϵB (η) (x (η)− 1)σ2

in µη (η) (given by (A.40)), and, form (A.3), ϵB (η) = 0. Therefore, I obtain

µη (η) = ρ− [λF (l (η))− δ]− (x (η)− 1)σ2 . (A.33)

Substituting this expression of µη (η) and dση(η)
dη

= x′ (η)σ into (A.39), I obtain

p′ (η)

p (η)
=

2η

η2 (x (η)− 1)2 σ2

{
ρ− [λF (x (η) η)− δ]− (x (η)− 1)σ2 [x (η) + x′ (η) η]

}
,

(A.34)
where l (η) is substituted with x (η) η (i.e., the loan market clearing condition) and ση (η) is substi-
tuted with (x (η)− 1)σ (see (A.41)). Note that the loan market clearing condition, x (η) η = l (η),
implies that x (η) + x′ (η) η = l′ (η). Therefore, equation (A.34) can be simplified to

p′ (η)

p (η)
=

2η

η2 (x (η)− 1)2 σ2

{
ρ− [λF (x (η) η)− δ]− (x (η)− 1)σ2l′ (η)

}
. (A.35)

Because the pledgeability constraint binds near η, i.e., l (η) = qK (η) and dqK(η)
dη

= 0 at η (see
Proposition 6), l′ (η) is equal to zero. Therefore, equation (A.35) can be simplified to

p′ (η)

p (η)
=

2η

η2 (x (η)− 1)2 σ2
{ρ− [λF (x (η) η)− δ]} ≥ η

η2 (x (η)− 1)2
> 0 , (A.36)

where the second inequality follow the parameter condition given by (2). Therefore, given the
continuity of p′ (η), there exists a neighborhood of η, denoted by (ηB, η], where p′ (η) > 0, and
thus, the maximum value of p (η) in this neighborhood is obtained at η.
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Proof of Lemma 9. The expected time to reach from η is solved below. Define fη0 (η) the
expected time it takes to reach η0 starting from η ≤ η0. Define g (η0) = fη0

(
η
)

the expected
time to reach η0 from η. One has to reach η ∈

(
η, η0

)
first and then reach η0 from η. Therefore,

g (η) + fη0 (η) = g (η0). Since g (η0) is constant, we differentiate both sides to have g′ (η) =

−f ′
η0
(η) and g′′ (η) = −f ′′

η0
(η). From ηt, the expected time to reach η0, denoted by fη0 (ηt), is

decomposed into s−t, andEt [fη0 (ηs)], i.e., the expected time to reach η0 from ηs (s ≥ t) after s−t
has passed. We have fη0 (ηt) equal to Et [fη0 (ηs)] + s− t. Therefore, t + fη0 (ηt) is a martingale,
so fη0 satisfies the ordinary differential equation: 1+ f ′

η0
(η)µη (η)+ ση(η)2

2
f ′′
η0
(η) = 0. Therefore,

g (η) must satisfy

1− g′ (η)µη (η)− ση (η)2

2
g′′ (η) = 0.

It takes no time to reach η, so g
(
η
)
= 0. Moreover, since η is a reflecting boundary, g′

(
η
)
= 0.

Proof of Proposition 13. Consider z in the neighborhood of η,
(
η, η + ϵ

)
, where ϵ is a positive

constant. The boundary condition g′
(
η
)
= 0 implies that, first, g′′

(
η
)
= 2

(x(η)−1)σ2
(from the

ODE in Lemma 9) where I use the expression of diffusion of ηt in (16), i.e., ση(η) = (x(η)− 1)σ

x
(
η
)

at ηt = η, and, second, by Taylor’s expansion and the boundary condition g′
(
η
)
= 0,

g′ (z) = g′
(
η
)
+ g′′

(
η
) (
z − η

)
+ o

(
z − η

)
=

2
(
z − η

)(
x
(
η
)
− 1
)
σ2

+ o
(
z − η

)
, (A.37)

where let o
(
z − η

)
denote the higher order infinitesimal of z − η, which is smaller than the width

of the neighborhood ϵ. Therefore, for any η ∈
(
η, η + ϵ

)
, I obtain the expected time it takes to

reach η from η:

g (η) =g
(
η
)
+

∫ η

η

g′ (z) dz =

(
η − η

)2(
x
(
η
)
− 1
)
σ2

+ o
((
η − η

)2)
, (A.38)

where I use the boundary condition, g
(
η
)
= 0, in Lemma 9. Equation (A.38) shows that in a

small neighborhood of η, the recovery time increases quadratically in the destination state η (in the
numerator). More importantly, the recovery time is longer when bank leverage, x

(
η
)
, is lower (in

the denominator). Let ηR denote η + ϵ.
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Proof of Proposition 14. From the ODE (27) that solves p (η), I obtain

p′ (η)

p (η)
=

2

(ση (η) η)2

[
µη (η) η − ση (η)2 η − ση (η) η2

dση (η)

dη

]
. (A.39)

From (16) and under the equilibrium condition rt = ρ, µη (η) is given by

µη (η) = ρ+ x (η) (R (η)− δ − ρ)− [λF (l (η))− δ]− (x (η)− 1)σ2 , (A.40)

and ση (η) is given by
ση (η) = (x (η)− 1)σ , (A.41)

which implies that dση(η)
dη

= x′ (η)σ. At η where the pledgeability constraint does not bind, I use
(18) and (19) to substitute R

(
η
)
− δ − ρ with −ϵB

(
η
) (
x
(
η
)
− 1
)
σ2 in µη (η), and, form (A.2),

ϵB
(
η
)
= −1. Therefore, I obtain

µη
(
η
)
= ρ−

[
λF
(
l
(
η
))

− δ
]
+
(
x
(
η
)
− 1
)2
σ2 = ρ−

[
λF
(
l
(
η
))

− δ
]
+ ση

(
η
)2
. (A.42)

Substituting this expression of µη
(
η
)

and
dση(η)

dη
= x′

(
η
)
σ into (A.39), I obtain

p′
(
η
)

p
(
η
) =

2η

η2
(
x
(
η
)
− 1
)2
σ2

{
ρ−

[
λF
(
x
(
η
)
η
)
− δ
]
− ηση

(
η
)
σx′
(
η
)}

, (A.43)

where l
(
η
)

is substituted with x
(
η
)
η (i.e., the loan market clearing condition). Next, I further

simplify the expression by solving x′
(
η
)
.

From (24), ϵB
(
η
)
= −1 and

dqK(η)
dη

= 0, I obtain

x′
(
η
)
=

(
λ
(
qK
(
η
)
κ− ρ

)
− ρ

σ2

)
dϵB

(
η
)

dη
. (A.44)

From (24) and (A.41), I obtain

x′
(
η
)
=
(
x
(
η
)
− 1
) dϵB (η)

dη
. (A.45)
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Substituting this expression into (A.43), I obtain

p′
(
η
)

p
(
η
) =

2η

η2
(
x
(
η
)
− 1
)2
σ2

{
ρ−

[
λF
(
x
(
η
)
η
)
− δ
]
− ηση

(
η
)2 dϵB (η)

dη

}

≤
2η

η2
(
x
(
η
)
− 1
)2
σ2

{
ρ−

[
λF
(
x
(
η
)
η
)
− δ
]
− 2τ + σ2 + ση

(
η
)2}

≤
2η

η2
(
x
(
η
)
− 1
)2
σ2

(
ρ+ δ − 2τ + σ2 + ση

(
η
)2)

, (A.46)

where the first inequality follows (A.12) and the second follows l
(
η
)
≥ 0 (and F ′(·) > 0).

Finally, we examine the upper bound of
p′(η)
p(η)

given by (A.46). Equation (24) and ϵB
(
η
)
=

−1 imply that

ση
(
η
)2

=

(
λ
[
qK
(
η
)
κ− 1

]
− ρ
)2

σ2
. (A.47)

Therefore, from (A.46), a sufficient condition for p′
(
η
)
< 0 is

ρ+ δ − 2τ + σ2 +

(
λ
[
qK
(
η
)
κ− 1

]
− ρ
)2

σ2
< 0 , (A.48)

which is equivalent to

qK
(
η
)
<

1

κ
+
ρ+ σ

√
2τ − ρ− δ − σ2

λκ
, (A.49)

and it holds because λ
[
qK
(
η
)
κ− 1

]
− ρ ≥ 0 (see (23)). It has been proven that p′

(
η
)

is strictly
negative. This implies that there exists a neighborhood of η, denoted by (η, ηC) where p′

(
η
)
< 0.

In this neighborhood, in the interval
[
η, ηC

)
, the stationary density, p(η), is maximized at η.

Proof of Proposition 15. At ηt = η, ϵBt = −1 (see equation (A.2)), so xt = 1+ (Rt − δ− ρ)/σ2

(see equation (8) and (24)). Therefore, when credit intervention strictly reduces the loan rate, Rt,
it also strictly decreases bank leverage, xt, at η. Since bank leverage, xt, is a continuous function
of ηt, there exists a neighborhood of η where credit intervention reduces bank leverage, xt.

Proposition A.1 (Capital Value Lower Bound) qKt ≥ α
ρ+δ

.
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Proof of Proposition A.1. From Proposition 6, qKt ≥ qK
(
η
)
. Therefore, it is sufficient to prove

qK
(
η
)
≥ α

ρ+δ
. At η, by Itô’s lemma, we have

µK
(
η
)
=
dqK

(
η
)

dη

µη
(
η
)
η

qK
(
η
) +

d2qK
(
η
)

dη2

(
ση
(
η
)
η
)2

2qK
(
η
) =

d2qK
(
η
)

dη2

(
ση
(
η
)
η
)2

2qK
(
η
) , (A.50)

where the second equation follows the boundary condition that
dqK(η)

dη
= 0 in Proposition 6. Be-

cause, according to Proposition 6, dqK(η)
dη

> 0 when η > η, I obtain
d2qK(η)

dη2
> 0, and thus,

µK
(
η
)
> 0. Using the capital valuation equation (11) in Lemma 2, I obtain

qK
(
η
)
=
α−

(
R
(
η
)
− δ
)
l
(
η
)
+ λ

[
qK
(
η
)
F
(
l
(
η
))

− l
(
η
)]

ρ−
(
µK
(
η
)
− δ + σσK

(
η
)) (A.51)

=
α−

(
R
(
η
)
− δ
)
l
(
η
)
+ λ

[
qK
(
η
)
F
(
l
(
η
))

− l
(
η
)]

ρ−
(
µK
(
η
)
− δ
) ≥ α

ρ−
(
µK
(
η
)
− δ
) ≥ α

ρ+ δ
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where the second equality follows
dqK(η)

dη
= 0 in Proposition 6 and, by Itô’s lemma,

σK
(
η
)
=
dqK

(
η
)

dη

ση
(
η
)
η

qK
(
η
) = 0 , (A.52)

the first inequality follows the fact that the numerator is greater under the optimal l
(
η
)

than under
l = 0, and finally, the second inequality follows from µK

(
η
)
> 0, which was previously proven.

B Equity Issuance Costs

Bank equity issuance cost plays an important role in the model. Without this friction, the credit
supply curve becomes perfectly elastic at interest rate ρ + δ, where ρ (households’ discount rate)
accounts for the time value of money and δ is the expected default probability. Under the equity
issuance cost, banks become endogenously risk-averse and charges a loan risk premium. The
elasticity of credit supply increases in the level of bank equity. The cost of equity issuance, χ, is
set to 10% in the numerical solution based on evidence that I review below.

Seasoned equity offering (SEO) incurs three types of costs: (1) the direct costs, including

64



underwriters’ compensation and other direct costs (e.g., registration, legal, and auditing fees);
(2) underpricing; (3) the announcement effect on total market capitalization (Ritter, 2003). The
underwriters receive compensation for arranging and underwriting an offering of equity securities.
The underwriters’ compensation takes the form of “gross spread”, which is the difference between
the underwriting price received by the issuing company and the actual price offered to the public.
Boyson, Fahlenbrach, and Stulz (2016) calculate that the average gross spread is 5.02% of issuance
proceeds for banks. This number is close to the average of 5.44% across different industries (Lee,
Lochhead, Ritter, and Zhao, 1996). The other direct costs are estimated to be 1.7% (Lee, Lochhead,
Ritter, and Zhao, 1996). In sum, the total direct costs is close to 7% of the issuance proceeds.

The second type of issuance costs is the indirect cost of underpricing, which is estimated
to be 2.2% of the issuance proceeds averaged across industries (Corwin, 2003). Underpricing
is the practice of listing an equity offering at a price below its marketable value. Smith (1977)
was the first to document significant underpricing for SEOs. Corwin (2003) provides a review
of the theoretical literature of underpricing that involve a variety of model ingredients, such as
uncertainty and asymmetric information, price pressure, manipulative trading, transaction costs,
and conventional derwriting practices such as rounding offer prices.

The sum of direct costs and underpricing is around to 9% of the issuance proceeds. The
parameter of proportional issuance cost, χ, is set to 10% in the numerical solution, which is 1%
above the sum of direct costs and underpricing. This wedge is intended to capture the announce-
ment effect in a conservative fashion. According to the signaling theory in Myers and Majluf
(1984), equity issuance triggers a negative response in the stock market as it signals firm over-
valuation. A large literature on the SEO announcement effect supports the theory. The estimate
of announcement effect is around 2% across industries in the U.S. (Ritter, 2003). Because the an-
nouncement effect is on the issuing firm’s total market capitalization, it can be very large relative to
the issuance proceeds. For example, given an announcement effect of 2%, an equity offering that
is 3.5% of total market capitalization (the sample average from Baron (2020)) triggers a negative
market response that amounts to 57% (= 2%/3.5%) of the issuance proceeds.

However, whether the announcement effect should be regarded as issuance cost is a subject
of debate. One can argue that the negative market response would have occurred without equity
issuance because the management’s opinion regarding firm value may very well be disclosed in
some other manner. Therefore, in the calibration of issuance cost, χ, I only set a very value of 1%
of issuance proceeds to capture the announcement effect. Related, for banks, equity issuance can
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be motivated by regulatory compliance, so the signaling model may not directly applicable. Kee-
ley (1989), for example, argues that bank regulation reduces the information content that otherwise
would be revealed by a security issuance (in general negative), and consequently stock announce-
ment effects might be less negative for bank SEOs than those of non-banks.48 Li, Liu, Siganos,
and Zhou (2016) find the announcement effect of bank equity issuance is around -1%. The passage
of Dodd-Frank Act strengthened regulatory requirement on equity capital and thus diminished the
negative signaling effect of banks’ decision to replenish capital through equity issuance.

C Parameter Calibration

The numerical solutions are based on the following parameter values. One unit of time is one year.
Goods produced per unit of capital, α, is normalized to one. Under the constant return-to-scale
production technology, capital represents efficiency units of production. Following Brunnermeier
and Sannikov (2014), I adopt the following parameter values for capital depreciation rate, the size
of shock to capital, and households’ discount rate, setting δ to 0.05, σ to 0.1, and ρ to 0.05, respec-
tively. I adopt these commonly used parameter values in the literature so that I can attribute the
novel dynamics in my model to its internal mechanisms rather than drastically different parameter
values. The equity issuance cost, χ = 0.1, is based on the empirical literature (Appendix B).

Bank discount rate, ρ, which is equal to the expected growth rate of value function in equi-
librium, is set to 0.1 in line with the average stock return of US banks.49 Note that the Hamilton-
Jacobi-Bellman (HJB) equation (A.1) in Appendix A shows that the expected growth rate of bank
value function, i.e., bank shareholders’ value, is equal to ρ.50

The parameters, λ and κ are related to firms’ credit needs and how profitable it is to create
new productive capital. For the lack of direct counterparts in the literature, I calibrate these param-
eters targeting leverage (debt-to-total assets ratio) and valuation (equity price-to-earnings ratio) of

48Consistent with this hypothesis, the announcement effect is smaller for banks than non-bank firms. The earlier
studies documented a market negative response of 1.4% to 1.5% (Wall and Peterson, 1988; Keeley, 1989; Wansley
and Dhillon, 1989). The Federal Deposit Insurance Corporation Improvement Act (FDICIA) was enacted in 1991.
Krishnan et al. (2010) find that the announcement effect diminished after FDICIA and regulation-driven equity raising
is associated with a smaller negative announcement effect. The difference in announcement effects between voluntary
and involuntary equity issuance is also found in earlier studies Cornett and Tehranian (1994).

49The Dow Jones U.S. Banks Index is designed to measure the stock performance of U.S. banks (Bloomberg Ticker:
DJUSBK). As of October 5th, 2025, the ten-year average annualized return is 9.22%.

50The calibration of ρ is also consistent with Gertler and Kiyotaki (2010) who set a bank exit rate to 0.1, as idiosyn-
cratic Poisson-arriving exit is isomorphic to exponential discounting.
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US nonfinancial firms that reflect, respectively, firms’ demand for debt financing and profits from
creating efficiency units of production (capital). Specifically, I set λ to 0.01 and κ to 0.65 such that
the average firm leverage and equity price-to-earnings match data.51 Li (2025) reports a ratio of
bank loans to total assets equal to 19% (see also Lian and Ma (2020)).52 Ben-David and Chinco
(2024) reports a price-to-earnings ratio of 16 for the median firm. For the decreasing return-to-
scale investment technology, parameters are set so that it stays close to the baseline investment
technology with constant return-to-scale, so I set κ and κ1 to 0.66 and 0.99, respectively.

The parameters discussed so far are for the numerical solutions of the laissez-faire economy
in Figure 4. The numerical solution of the economy under credit intervention in Figure 5 requires
the following parameters of credit policy, ηG, ω0, and ω1. The threshold, ηG, is set to 0.5, so
the government intervenes at around -1% growth rate of the economy. For comparison, the an-
nual growth rate of US real GDP in 2020 was -1.02%, when credit intervention in the U.S. took
place in response to the Covid-19 pandemic. As a reminder, the government intervenes when the
private-sector credit intermediation capacity, given by ηt, is below ηG. There is no direct empirical
counterpart for the threshold, so ηG is set to a reasonable value for the purpose of demonstrating
the qualitative predictions of the model rather than to perfectly mimic policy in practice. Moreover,
I set ω0 and ω1 to 0.97 and 1.95, respectively. The first discipline for these two parameters is to
have the scale of intervention equal to zero at the threshold ηG. The second discipline is from the
observed scale of intervention during the Covid-19 pandemic in the U.S. Under these parameters,
the scale of credit intervention is 11% of firms’ total debt when the growth rate of the economy is
-3%. For comparison, the (annualized) quarterly growth rate of US real GDP in 2020 ranged from
-7.5% to 1.3%. The scale of intervention in 2020 is 1.35 trillion dollars, which is 11% of the total
debt of U.S. nonfinancial corporate business that is around 12 trillion dollars (FRED, 2024).53

51The average values are calculated under the stationary distribution of ηt that will be formally introduced later.
The debt-to-asset ratio is lt/q

K
t , i.e., the ratio of credit per unit of capital scaled by capital value. The equity price-

to-earnings ratio is computed as follows. One unit of capital is worth qKt with debt lt, so equity is qKt − lt. Annual
expected (“forward”) earnings from one unit of capital is given by α − δqKt − (Rt − δ)lt, where the first term is the
production flow, the second term represents the expected capital destruction, and the last term represents debt costs.

52See Table D.1 in Li (2025) where firms are classified into those that have tangible (collateral) assets and rely
on bank credit to finance investment and those whose production is more dependent on intangibles and investment
financed by internal cash holdings. The former category has a bank loan-to-total assets ratio of 0.19.

53The Fed set up around 2.3 trillion credit support decomposed into 0.6 trillion in MSLP, 0.75 trillion in PMCCF and
SMCCF, and 0.95 trillion in PPP Liquidity Facility (Li and Li, 2025). I sum up the credit support via MSLP, PMCCF,
and SMCCF and leave out PPP which is essentially subsidy rather than government lending to firms at market rates.
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D Welfare

The welfare at time t is given by (29). Conjecture that Wt = θ(ηt)Kt, where Kt evolves as

dKt

Kt

= µK
t dt+ σdZt, (D.53)

where µK
t = F (lt)λ− δ. I conjecture that in equilibrium, θt = θ(ηt)K evolves as

dθt = µθ
tθtdt+ σθ

t θtdZt, (D.54)

where µθ
t and σθ

t will be determined endogenously. Given the law of motion of Kt and θt, the
following HJB equation holds:

ρ = (α− λlt)/θt + µθ
t + µK

t + σθ
t σ = (α− λlt)/θt + µθ

t + F (lt)λ− δ + σθ
t σ. (D.55)

Rearranging the HJB equation, I obtain

ρ− (µθ
t − δ + σθ

t σ) = (α− λlt)/θt + F (lt)λ, (D.56)

where the right side contains θt and lt that can be solved by the credit-market clearing condition
as functions of ηt, the first derivative of qB(ηt), and qK(ηt)(see Appendix C). Therefore, given the
solutions of qB(ηt) and qK(ηt), the right side contains θ(ηt) and the rest is a function of ηt.

On the left side of the equation (D.56), by Itô’s lemma, µθ
t = µθ(ηt) can be written as

µθ (ηt) =
dθ (ηt)

dηt

µη (ηt) ηt
θ (ηt)

+
d2θ (ηt)

dη2t

(ση (ηt) ηt)
2

2θ (ηt)
, (D.57)

and σθ
t = σθ(ηt) can be written as σθ (ηt) =

dθ(ηt)
dηt

ση(ηt)ηt
θ(ηt)

, where µη (ηt) and ση (ηt) are functions
of ηt and given in the law of motion of ηt (16). Therefore, I have shown that the equation (D.56) is
a second-order differential equation for θ(ηt). In summary, I conjecture Wt = θ(ηt)Kt, and under
this conjecture, I have shown that a function θ(ηt) exists as a solution to the second-order differ-
ential equation (D.56), thus confirming the conjecture. Solving the welfare function (a conditional
expectation) is equivalently to solving the differential equation (D.56). This is similar to the classic
result of Feynman–Kac formula.
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