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Abstract

Slicing an asset by payout horizons unseals information about its future returns and cash

flows. As an example, we slice an equity market index into granular pieces (dividend strips)

and show that valuation ratios of its strips span the underlying state variables of the index.

Strip valuation ratios form a term structure. The level and slope strongly predict the index

dividends. The slope alone is sufficient for forecasting the index return. The steepening and

flattening of valuation term structure reflect discount-rate variations rather than information

on the cash-flow trajectory, because market participants have very limited information about

long-term cash flows.
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1 Introduction

Asset pricing theories suggest a great variety of state variables that drive asset prices through

expected cash flows and returns (discount rates). These state variables reflect different parts of

the economy, such as consumption, production, financial intermediation, and government policies,

and cover many economic forces from behavioral biases to institutional frictions. With numerous

signals available, data-driven approaches have become popular for forecasting. The state variables

form a signal base and are aggregated via statistical models of nonlinear and complex mappings to

the forecasting targets, such as cash flows and returns (e.g., Kelly, Malamud, and Zhou, 2024).

We propose a simple alternative that does not require the buildup of a large set of signals

(“big data”) or state-of-art statistical models. Importantly, the source of predictive power is easy to

interpret. We take a market-driven approach. For any asset, information relevant to its future cash

flows and returns is likely to be in its market price and the prices of its payout at different horizons.

Therefore, slicing the asset by payout horizons unlocks the information we need for forecasting.

Consider the S&P 500 index.1 It consists of dividend strips at different maturities (Binsbergen,

Brandt, and Koĳen, 2012). In an exponential-affine model that generalizes the setup in Lettau and

Wachter (2007), we show that the logarithm of strip prices scaled by realized dividend are linear

functions of state variables. As strips with different maturities differ in their state-variable loadings,

their valuation ratios are linearly independent combinations of state variables and map out the state

space as long as there are as many strips as the state variables. Thus, by slicing the asset along

payout horizons into sufficiently granular pieces, we obtain strip valuation ratios that proxy for the

state variables and reveal information needed for forecasting return and dividends of the asset.

Our paper provides four findings. First, by empirically analyzing the valuation ratios of strips

across maturities, we find the state space of the equity index has a low dimensionality. These strip

valuation ratios form a term structure. The level and slope span all the valuation ratios, and for

forecasting dividend growth and return of the index, we only need these two state-variable proxies.2

1We focus on the S&P 500 as its derivatives (futures), which are used to construct strip prices, have liquid markets.
In the appendix, we show that our results hold for the Fama-French market portfolio (CRSP value-weighted index).

2The first two principal components of valuation ratios account for 96.3% of total variance, which indicates two
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The level is the log price-dividend ratio of the asset itself (𝑝𝑑). The slope is the difference between

𝑝𝑑 and valuation ratio of one-year strip. While there are many economic forces that affect the stock

market index, the level and slope of its valuation term structure efficiently summarize these forces.

Second, the slope alone is sufficient for forecasting return. It delivers an in-sample 𝑅2 of

24.8% and an out-of-sample 𝑅2 of 14.6% and subsumes the predictive power of the level (𝑝𝑑).

Augmenting the slope with other predictors from the literature does not improve the forecasting

performances.3 What motivates our analysis is the linear mapping between strip valuation ratios

and state variables in an exponential affine model.4 To address the concern of nonlinearity, we

show that the slope outperforms machine learning algorithms that aggregate many predictors

nonlinearly (Kelly, Malamud, and Zhou, 2024).5 Many mechanisms have been proposed to explain

the dynamics of expected return. The slope summarizes these forces. The steepening (flattening) of

valuation term structure predicts negative (positive) returns. The expected return is highly volatile:

a decrease of the slope by one standard deviation adds 7.7% to the expected annual return.

Third, the return predictive power of the slope has a simple interpretation: market participants

have very limited information on cash-flow growth beyond the very next year; therefore, when the

valuation term structure steepens, it is not driven by an improving expectation of long-run growth but

due to a lower discount rate that benefits the valuation of long-duration cash flows more than that of

near-term cash flows. Specifically, we find that forecasting cash flows over the next year can be done

fairly accurately using our state variable proxies (the level and slope) or survey expectations (analyst

forecasts); however, these variables cannot forecast cash flows beyond one year. Both theoretically

and empirically, we demonstrate a tight connection between the return predictor power of the slope

of valuation term structure and market participants’ lack of information on long-term growth.

Lastly, we find the role of traditional price-dividend ratio (𝑝𝑑)—the level of valuation term

state variables are sufficient, such as the level and slope. When forecasting returns and dividend growth, the level and
slope perform as well as any pair of valuation ratios or combinations of three or more valuation ratios.

3The slope outperforms other predictors, including those summarized in Goyal and Welch (2007) and in recently
published papers, across evaluation metrics, such as Hodrick (1992) adjustment for standard errors, Stambaugh (1999)
adjustment for small-sample bias, and out-of-sample tests such as encompassing (ENC) and Clark-West (CW) tests.

4The linear mapping can also be obtained via log-linearization (e.g., Binsbergen and Koĳen, 2010).
5Kelly, Malamud, and Zhou (2024) consider the predictors in Goyal and Welch (2007). To enhance the predictive

power of their models, we include more return predictors from the more recent literature.
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structure—in spanning the state space is not to predict returns (as the slope subsumes its return

predictive power) but to augment the slope in forecasting near-term (annual) dividends. Both the

level and slope predict dividend growth poorly on a standalone basis, but together, they deliver an

in-sample 𝑅2 of 38.6% and an out-of-sample 𝑅2 of 31.9%. Expected return and cash-flow news

can be correlated (Lettau and Ludvigson, 2005; Kothari, Lewellen, and Warner, 2006). Therefore,

when forecasting dividend growth, it is important to control for variation in the expected return

(the slope). The literature has coalesced around using 𝑝𝑑 to predict returns. For this reason, it has

always been included as a state variable in asset pricing and macro-finance studies. However, our

findings show that the slope of valuation term structure is actually the state variable that corresponds

to the expected return, while the level forecasts dividend growth when we control for the slope.

Overall, our paper illustrates a new method of identifying and combining information for

forecasting returns and cash flows of financial assets. First, we slice an asset along payout horizons

and compute valuation ratios of its cash-flow strips. Next, we examine the strip valuation ratios

that proxy for state variables to determine the state space dimensionality. For a two-dimensional

state space, the level and slope contain sufficient information for forecasting returns and cash flows.

In particular, the slope of an asset’s valuation term structure is a powerful return predictor. For

the S&P 500 index, the slope is calculated as the difference between its own price-dividend ratio

and valuation ratio of the one-year dividend strip. The one-year horizon is chosen because we find

market participants are not informed about cash flows beyond the next year. For a different asset, a

similar analysis can be performed to identify the cash-flow “information cliff .”

Our paper shares with the bond literature the use of valuation ratios (i.e., yields for bonds)

as state-variable proxies (e.g., Litterman and Scheinkman, 1991; Duffie and Kan, 1996; Dai and

Singleton, 2000; Duffee, 2002) but offers a different approach to return and cash-flow prediction.

As pointed out by Kelly, Malamud, and Pedersen (2023), traditionally, an asset’s own valuation

ratio is used to predict its return and cash flows. Bond yields are used to predict returns of the same

bonds (e.g., Campbell and Shiller, 1991). The price-dividend ratio and other valuation ratios of a

stock market index are used to predict the index return and cash flows (e.g., Campbell and Shiller,
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1988; Fama and French, 1988a; Lewellen, 2004; Cochrane, 2011), and the same has been done for

individual stocks (e.g., Vuolteenaho, 2002). More recently, valuation ratios of index dividend strips

have been used to predict returns of these strips (e.g., Binsbergen et al., 2013). Kelly, Malamud, and

Pedersen (2023) propose using valuation ratios of multiple assets to jointly predict their returns.

Our paper challenges this traditional approach by showing that an asset’s own valuation ratio

is not the optimal predictor for returns or cash flows; instead, one should slice the asset into strips by

payout horizons and explore information in its valuation term structure. For stock market indices,

we use the slope to predict index returns rather than returns of dividend strips, and we use both the

level and slope to predict cash flows.6 Our method cannot be applied to single-payoff assets, such

as zero-coupon bonds and dividend strips (the “base assets”). In our method, their valuation ratios

predict returns and cash flows of the assets they aggregate up to, not those of themselves.

We emphasize that an asset has many valuation ratios, its own valuation ratio and those of its

strips. Kelly and Pruitt (2013) view an equity index as the sum of stocks rather than its own strips.

Using partial least squares, they extract signals on index returns and cash flows from firm-level

valuation ratios. Our approach differs in both the signal base and signal aggregation. In contrast to

firm-level valuation ratios, valuation ratios of the strips only contain information about the index

they aggregate up to and do not contain firm-level noise. Thus, they directly map out state variables

for the index. Moreover, while the method in Kelly and Pruitt (2013) applies to indices that consist

of assets with individual market valuations, our method applies to any asset whose strip prices can

be obtained from the market or indirectly from its derivatives. Second, we do not rely on statistical

models to aggregate signals. After determining the dimensionality of strip valuation ratios, we

form state-variable proxies (the level and slope of valuation term structure) that can be measured

in real time from market prices, less prone to estimation error. These variables forecast returns and

cash flows. For return prediction, we further consolidate signals: after identifying the cash-flow

information cliff, we compute a univariate predictor, the slope around the (one-year) cutoff.

Identifying the cash-flow information cliff is a critical step in our method. Next, we provide

6For bonds, the analogy is to compute the slope of term structure of bond yields and use the slope factor to predict
returns of the aggregate bond market portfolio rather than returns of the individual bonds.
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more details on the findings that market participants are not well informed about cash-flow growth

beyond the very next year. To derive a test for this hypothesis, we set up a two-dimensional state

space model, motivated by our findings on the state space dimensionality. The two state variables

can be rotated to represent the conditional expectations of annual return and of annual dividend

growth rate that both follow AR(1) processes (Lettau and Wachter, 2007; Binsbergen and Koĳen,

2010). In our model, the level and slope of valuation term structure are linear combinations of

these state variables, and vice versa, as we have found empirically. At any time 𝑡, information

about expected future cash flows is embedded in the current expectation of dividend growth over

the next year. Given that the expected dividend growth rate follows an AR(1) process, having the

information cliff at the one-year horizon is equivalent to having a zero autoregressive coefficient.

To estimate this autoregressive coefficient (persistence) of expected dividend growth, we

use analyst forecasts to proxy for cash-flow growth expectations.7 The results across empirical

specifications consistently show that growth expectation lacks persistence in line with De La O and

Myers (2021).8 We also prove analytically that forecasting errors from using the slope as a return

predictor should comove with value of the autoregressive coefficient. To test this prediction of our

model, we conduct a rolling-window estimation. In each window, we estimate the autoregressive

coefficient of expected cash-flow growth and compute the return forecasting error. Both the in- and

out-of-sample forecasting errors comove with the value of the autoregressive coefficient.

In our model, having a zero autoregressive coefficient of the expected cash-flow growth rate

is equivalent to the fact that market participants are not informed about growth beyond the next

year. This equivalence condition allows for a sharp statistical test, and our model setup is grounded

by our empirical analysis of the state space. Next, we step outside our model and provide further

evidence on the cash-flow information cliff at a one-year horizon by directly examining market

7For robustness, we fit a state-space model to dividend data to estimate the persistence of expected dividend growth
and find results consistent with the estimation based analyst forecasts: the autoregressive coefficient is close to zero.

8When the autoregressive coefficient is zero, agents’ belief on cash-flow dynamics in our model is the same as that in
De La O and Myers (2021). Our paper differs in that agents’ cash-flow belief is not the focus but guides the construction
of our return predictor and that we jointly model cash-flow belief and agents’ price of risk following Lettau and Van
Nieuwerburgh (2007). Moreover, we show theoretically and empirically that the estimated persistence of expected
cash-flow growth is closely associated with return forecasting errors of the slope of valuation term structure.
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participants’ cash-flow expectations. We show that earnings and dividend growth within one year

are highly predictable, by both our state variables (the level and slope) and by analysts’ forecasts.

The 𝑅2 is 73% (45%) from forecasting earnings (dividend) growth over the next year. In contrast,

cash-flow predictability beyond one year is weak. For earnings growth from the next one to two

years, the 𝑅2 drops to 8%. It further declines to 7% for growth between the second and third years.

Beyond discount-rate variation, return predictability often has an alternative interpretation

based on mispricing. Consider a market timing strategy for the S&P 500 index that we call “betting

against the slope”. The slope has a negative coefficient for predicting return, so the strategy reduces

exposure when the valuation term structure steepens and increases exposure when the term structure

flattens. Its Sharpe ratio of 0.58 is 55% higher than that of buy-and-hold strategy (Campbell and

Thompson, 2008). Traditionally, market timing strategies bet against the level: it scales up exposure

when the price-dividend ratio is low and scales down when 𝑝𝑑 is high, betting against overpricing

relative to fundamentals (Lewellen, 2004). Our findings indicate that market participants are well

informed of near-term cash flows, so mispricing is likely in the valuation of long-term cash flows.

Betting against the slope is betting on market participants’ lack of information on long-term cash

flows. When the valuation of long-term cash flows rises relative to that of near-term cash flows, it

signals exuberance about long-term growth; it falls when market participants are pessimistic.

Literature. Duffie and Kan (1996) point out that state variables of the bond market can be linearly

mapped to zero-coupon bond yields. This observation is critical for estimating term structure models

(Duffee, 2013). The equity counterparts of zero-coupon bonds are dividend strips. In theory, strip

valuation ratios proxy for state variables of the equity market (e.g., Lettau and Wachter, 2007).9

Several papers applied this insight empirically. Binsbergen et al. (2013) use valuation ratios

of dividend strips to forecast strip returns, dividends, and macroeconomic variables.10 Different

9The bond literature widely applied affine models of stochastic discount factors (e.g., Duffie and Kan, 1996; Dai and
Singleton, 2000; Duffie, Pan, and Singleton, 2000; Duffee, 2002; Ang and Piazzesi, 2003; Bikbov and Chernov, 2010).
Dividend processes are added to build no-arbitrage equity models that are more flexible than fully specified equilibrium
models (e.g., Bekaert and Grenadier, 1999; Pan, 2002; Brennan, Wang, and Xia, 2004; Eraker, 2008; Koĳen, Lustig,
and Van Nieuwerburgh, 2015; Backus, Boyarchenko, and Chernov, 2018; Kragt, de Jong, and Driessen, 2020).

10Binsbergen et al. (2013) also model the market betas of dividend strips as functions of their valuation ratios.
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from Binsbergen et al. (2013), our focus is on the asset that strips aggregate up to (equity index)

rather than strips themselves. Our goal is to illustrate a method of return and cash-flow forecasting

based on slicing assets into strips, and we provide several findings. State space for the equity index

is two-dimensional.11 The level and slope of valuation term structure predict index returns and cash

flows. For return prediction, the striking difference in near- and long-term cash-flow predictability

leads to a particular combination of strip valuation ratios (the slope) as the composite signal.

Using bond yields and equity market price-dividend ratio as rotated state variables, Cieslak

and Pang (2021) extract state-variable shocks, such as monetary, growth, and risk premium news.

Our paper focuses on forecasting and stays agnostic about the interpretation of state variables.12

Return and cash-flow forecasting often relies on theoretically motivated state variables. Our

approach follows the other tradition of latent state modeling (Cochrane, 2008a; Binsbergen and

Koĳen, 2010; Kelly and Pruitt, 2013; Rytchkov, 2012). Our contribution is to use the observable

strip valuation ratios to map out the latent state variables rather than to rely on statistical filtering.

Strip valuation ratios based on market prices are powerful “summary statistics” of various

economic forces (state variables) from macroeconomic dynamics to belief distortions. Our exercises

rely on these market prices, and for the S&P 500 strips, we impute their prices from prices of S&P

500 index futures, which are among the most actively traded futures. Giglio, Kelly, and Kozak

(forthcoming) analyze the dual problem, that is to calculate strip prices from empirically specified

and observed dynamics of state variable when market data on strip prices are unavailable.13

Our paper does not study the term structure of equity risk premium (the difference in average

returns between short- and long-horizon dividend strips), which has attracted arguably most atten-

tion among studies on dividend strips.14 We only use dividend strip prices for information on state

11Our findings confirm the two-dimensional setup of state space models of the aggregate stock market (e.g., Lettau
and Wachter, 2007; Cochrane, 2008a; Binsbergen and Koĳen, 2010; Rytchkov, 2012; Kragt et al., 2020). Low
dimensionality is also found in bond markets (e.g., Litterman and Scheinkman, 1991; Dai and Singleton, 2000) and in
the cross-section of equity factors (e.g., Feng et al., 2020; Kozak et al., 2020).

12While we do not take a stand on the interpretation of state variables, we report the results from using the level and
slope to predict macroeconomic variables in Table A.4 the online appendix.

13A large literature discusses how to measure strip prices from market data (e.g., Binsbergen et al., 2012; Binsbergen
and Koĳen, 2017; Cejnek and Randl, 2016, 2020; Cejnek et al., 2021; Gormsen and Lazarus, 2023; Golez and
Jackwerth, 2024) and the associated challenges (Schulz, 2016; Song, 2016; Boguth et al., 2022).

14There is an extensive literature on the term structure of equity risk premium (e.g., Lettau and Wachter, 2007;
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variables of the asset they add up to. The term structure that is relevant for our analysis is the one

of strip valuation ratios rather than the term structure of strip average returns.

Traditionally, an asset’s own valuation ratio is used to predict its returns. We demonstrate that

an asset has many valuation ratios, its own valuation ratio and those of its strips that form a valuation

term structure. Importantly, it is the slope rather than an asset’s own valuation ratio, i.e., the level

of valuation term structure, that predicts its return. Our findings of the strong return predictability

of equity market index contributes to the voluminous literature on return predictability, and we

compare thoroughly the performance of our return predictor against those in the literature.15 The

construction of our predictor is simple, and it outperforms the other predictors across various

metrics. Moreover, from both theoretical and empirical perspectives, we provide an explanation of

the connection between the slope of valuation term structure and the conditional expected return.

Our explanation is based on the fact that market participants lack information on long-term growth.

In the bond literature, two issues have been raised regarding the use of yields (valuation ratios

for bonds) to predict returns: nonlinear relationship between valuation ratios and state variables

and unspanned state variables.16 To address the first concern, we show that our predictor, the slope,

outperforms the machine learning algorithms in Kelly, Malamud, and Zhou (2024) that nonlinearly

aggregate many predictors. To address the second concern, we run spanning tests: when forecasting

returns, augmenting the slope with other predictors does not reliably improve the performance.

Using strip valuation ratios to map out state variables has broad applications beyond what

Hansen et al., 2008; Lettau and Wachter, 2011; Binsbergen et al., 2013; Belo et al., 2015; Hasler and Marfè, 2016;
Ai et al., 2018; Backus et al., 2018; Miller, 2018; Bansal et al., 2021; Gonçalves, 2021; Gormsen, 2021; Boguth
et al., 2022; Hasler and Khapko, 2023). The difference in average returns of short- and long-term dividend strips
led to decomposing returns of the market and investment strategies to the short-duration or long-duration component
(Gonçalves, 2019; Gormsen and Koĳen, 2020; Binsbergen, 2021; Knox and Vissing-Jørgensen, 2022).

15Our approach to return prediction is based on slicing assets into strips along payout horizons and adds the growing
literature on return predictability (e.g., Fama and French, 1988b; Campbell and Shiller, 1988; Baker and Wurgler,
2000; Lettau and Ludvigson, 2001; Lewellen, 2004; Cochrane, 2008b; Ang and Bekaert, 2007; Goyal and Welch,
2007; Lettau and Van Nieuwerburgh, 2007; Campbell and Thompson, 2008; Rapach et al., 2010; Kelly and Pruitt,
2013; Rapach et al., 2013; Golez, 2014; Rapach et al., 2016; Martin, 2017; Golez and Koudĳs, 2018; Johnson, 2019;
Kozak and Santosh, 2020; Chen et al., 2022; Hillenbrand and McCarthy, 2022; Kelly et al., 2024; Bordalo et al., 2024).

16The literature on unspanned factors emphasize stochastic volatility and macro factors (e.g., Collin-Dufresne and
Goldstein, 2002; Li and Zhao, 2006; Collin-Dufresne et al., 2008; Cooper and Priestley, 2008; Bikbov and Chernov,
2009; Collin-Dufresne et al., 2009; Ludvigson and Ng, 2009; Andersen and Benzoni, 2010; Duffee, 2011; Joslin et al.,
2014; Cieslak and Povala, 2015, 2016; Bauer and Rudebusch, 2016; Feldhütter et al., 2016).

8



we have done in this paper. Forecasting return and cash flows are critical for understanding what

drives asset prices (Cochrane, 2008b, 2011; Koĳen and Van Nieuwerburgh, 2011; Pruitt, 2023).

Identifying state variables is an important task in macro finance as it lays the foundation for various

research topics, for example, vector autoregression models (e.g., Sims, 1980; Campbell and Ammer,

1993; Patelis, 1997; Bernanke and Kuttner, 2005; Larrain and Yogo, 2008; Cieslak and Pang, 2021).

Finally, our paper makes contributions to the literature on equity cash-flow predictability.17

Characterizing the dynamics of cash-flow expectations is at the center of asset pricing literature (e.g.,

Bansal and Yaron, 2004; Beeler and Campbell, 2012; Belo, Collin-Dufresne, and Goldstein, 2015;

Collin-Dufresne, Johannes, and Lochstoer, 2016). Our state-variable proxies and analyst forecasts

strongly predict near-term cash flows (dividends and earnings) but do not predict cash flows beyond

one year, suggesting that the steepening of valuation term structure is not driven by improving

expectation of long-term growth but due to a lower discount rate or errors in long-term growth

expectation. The mispricing interpretation is in line with Bordalo et al. (2024) and similar insights

found in the cross-section of stocks (Da and Warachka, 2011).18 In our state space model, the lack

of information on long-term cash-flow growth translates into a zero autoregressive coefficient of

agents’ expectation of cash-flow growth, which leads to a model of belief formation in line with

De La O and Myers (2021). Our findings echo recent studies on the importance of agents’ perceived

persistence of state variables (Gabaix, 2019; Wang, 2020). Our use of analyst forecasts to proxy

for agents’ expectations follows a growing body of research on analyzing subjective expectations

based on survey data (see reviews by Adam and Nagel, 2023; D’Acunto and Weber, 2024).19

17The lack of cash-flow predictability motivates using valuation ratios to predict returns Cochrane (2011). The recent
literature has found more evidence of cash-flow predictability (Binsbergen and Koĳen, 2010; Lacerda and Santa-Clara,
2010; Koĳen and Van Nieuwerburgh, 2011; Binsbergen et al., 2013; Chen et al., 2013; Golez, 2014; Jagannathan and
Liu, 2018; Pettenuzzo et al., 2020; Gao and Martin, 2021; Golez and Koudĳs, 2023; Sabbatucci, 2022; Pruitt, 2023).

18Errors in inflation expectation also contribute to mispricing of long-duration claims (De la O and Myers, 2024).
19Studies analyze firm-level cash-flow expectations (La Porta, 1996; Dechow and Sloan, 1997; Copeland et al., 2004;

Da and Warachka, 2011; Piotroski and So, 2012; Bordalo et al., 2019; Bouchaud et al., 2019; Binsbergen et al., 2022),
expectations of index cash flows (Chen et al., 2013; Gao and Martin, 2021; McCarthy and Hillenbrand, 2021; Nagel and
Xu, 2022; Charles et al., 2023; Schmidt-Engelbertz and Vasudevan, 2023; De la O and Myers, 2024), and expectations
in bond markets and macroeconomy (Amromin and Sharpe, 2014; Coibion and Gorodnichenko, 2015; Piazzesi et al.,
2015; Crump et al., 2016; Bordalo et al., 2020; Giglio et al., 2021; Pang, 2023; Farmer et al., forthcoming).
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2 Valuation Ratios and the State Space

We set up a state space model to illustrate the idea that the level and slope of equity valuation term

structure are linear combinations of the underlying state variables. Given a sufficiently granular set

of strips with different maturities, their valuation ratios fully span the state space.

We consider a dynamic economy where the information filtration is driven by a Markov

process. Specifically, the state of an economy at time 𝑡 is summarized by 𝑋𝑡 , a 𝐾-by-1 vector of

state variables. We assume that the law of motion of 𝑋𝑡 is given by a first-order vector autoregression

𝑋𝑡+1 = Π𝑋𝑡 + 𝜎⊤
𝑋 𝜖𝑡+1, (1)

where 𝜖𝑡+1 is a 𝑁-by-1 vector of shocks that capture all the news at 𝑡 + 1 and are independent over

time with normal distribution 𝑁 (0, Σ). Note that since any higher-order vector autoregression can

be written as a first-order vector autoregression by expanding the number of state variables, the

AR(1) specification is without loss of generality. The autoregressive coefficients are given by Π, a

constant 𝐾-by-𝐾 matrix, and 𝜎𝑋 is a 𝑁-by-𝐾 matrix of shock loadings.

The growth rate of dividend from 𝑡 to 𝑡 + 1 has a 𝑁-by-1 shock-loading vector 𝜎𝐷 ,

ln
(
𝐷𝑡+1
𝐷𝑡

)
= 𝑔𝑡 + 𝜎⊤

𝐷𝜖𝑡+1, (2)

where the time-varying expected dividend growth rate is given by

𝑔𝑡 = 𝜙
⊤𝑋𝑡 + 𝑔 −

1
2
𝜎⊤
𝐷Σ𝜎𝐷 . (3)

We allow the state-variable loadings, 𝜙, to be any 𝐾-by-1 vector.

No arbitrage condition implies the existence of a stochastic discount factor

𝑀𝑡+1 = exp
{
−𝑟 𝑓 −

1
2
𝜆⊤𝑡 Σ𝜆𝑡 − 𝜆⊤𝑡 𝜖𝑡+1

}
, (4)

where 𝑟 𝑓 is the one-period risk-free rate and the 𝑁-by-1 vector of risk prices, 𝜆𝑡 , is given by

𝜆𝑡 = 𝜆 + 𝜃⊤𝑋𝑡 . (5)

We do not impose any restrictions on 𝜃, the state-variable loadings of the risk prices, 𝜆𝑡 . As pointed
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out by Kozak, Nagel, and Santosh (2018), price of risk can also be interpreted as belief distortion.

Let 𝑃𝑛𝑡 denote the time-𝑡 price of the dividend paid at 𝑡+𝑛. The no-arbitrage pricing functional

gives a recursive equation for the prices of dividend strips: for 𝑛 ≥ 1,

𝑃𝑛𝑡 = E𝑡
[
𝑀𝑡+1𝑃

𝑛−1
𝑡+1

]
, (6)

with the boundary condition 𝑃0
𝑡 = 𝐷𝑡 . The log price-dividend ratio of the dividend strip with

maturity 𝑛 is given by

𝑠𝑛𝑡 ≡ ln
(
𝑃𝑛𝑡

𝐷𝑡

)
= 𝐴 (𝑛) + 𝐵 (𝑛)⊤ 𝑋𝑡 , (7)

where 𝐴 (𝑛) and 𝐵 (𝑛) are deterministic functions of 𝑛 given by a system of recursive equations

(A.4)-(A.5) in the appendix with the initial conditions 𝐴 (0) = 0, and 𝐵 (0) = 0.

Given 𝐾 log price-dividend ratios of strips,
{
𝑠
𝑛𝑖
𝑡

}𝐾
𝑖=0, with a full-rank loading matrix,

B
(
{𝑛𝑖}𝐾𝑖=1

)
≡ [𝐵 (𝑛1) , 𝐵 (𝑛2) , ..., 𝐵 (𝑛𝐾)]⊤, the state space is recovered by

𝑋𝑡 = B
(
{𝑛𝑖}𝐾𝑖=1

)−1 [
𝑠
𝑛1
𝑡 − 𝐴 (𝑛1) , ..., 𝑠𝑛𝐾𝑡 − 𝐴 (𝑛𝐾)

]⊤ (8)

When the rank condition fails, these valuation ratios can still recover part of the state space. Let 𝐽

(< 𝐾) denote the maximum number of log price-dividend ratios with linearly independent loadings

𝐵 (𝑛) and {𝑛𝑖}𝐽𝑖=1 denote the corresponding set of maturities. We can write (8) as follows

B
(
{𝑛𝑖}𝐽𝑖=1

)
𝑋𝑡 =

[
𝑠
𝑛1
𝑡 − 𝐴 (𝑛1) , ..., 𝑠𝑛𝐽𝑡 − 𝐴 (𝑛𝐽)

]⊤
. (9)

The market of strips acts as a linear mapping, i.e., B
(
{𝑛𝑖}𝐽𝑖=1

)
, that compresses the 𝐾-dimensional

state space of 𝑋𝑡 into a 𝐽-dimensional space generated by the log price-dividend ratios. In sum,

a collection of log price-dividend ratios of dividend strips (partially) span the state space. The

revealed (rotated) state variables may represent different forces in the economy, including various

frictions and belief distortions. Empirically, these valuation ratios proxy for the state variables.

Next, we introduce the level and slope of equity valuation term structure. Let 𝑃𝑡 denote

the total stock market capitalization (i.e., the market price of dividends across all maturities). In
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Appendix I, we solve the log price-dividend ratio of the market (the level of valuation term structure)

𝑝𝑑𝑡 = ln (𝑃𝑡/𝐷𝑡) = 𝐴 + 𝐵⊤𝑋𝑡 , (10)

where 𝐴 and 𝐵 are constants defined in Appendix I. The slope, denoted by 𝑑𝑟𝑡 , is defined as the

difference between 𝑝𝑑𝑡 and the log ratio of one-year dividends to the realized dividend:

𝑑𝑟𝑡 ≡ ln (𝑃𝑡/𝐷𝑡) − ln
(
𝑃1
𝑡 /𝐷𝑡

)
= 𝑝𝑑𝑡 − 𝑠1𝑡 = 𝐴 − 𝐴(1) + (𝐵 − 𝐵(1))⊤ 𝑋𝑡 . (11)

As will be made clear, we label the slope as “𝑑𝑟𝑡” as it predicts returns and thus reflects the “discount

rate”. The level and slope of valuation term structure are linear combinations of state variables 𝑋𝑡 .

By having different coefficients of 𝑋𝑡 , they reveal different information about the state space.

3 An Empirical Analysis of the State Space

3.1 Variable construction and summary statistics

Dividend strip prices. Let 𝑃𝑛𝑡 denote the price of the dividend paid in year 𝑛. First, we calculate

𝑃𝑛+𝑡 , the price of dividends that are paid after the first 𝑛 years. Under the risk-neutral measure,

𝑃𝑛+𝑡 = 𝑒−𝑛𝑟 𝑓E𝑅𝑁𝑡

[ +∞∑︁
𝜏=1

𝑒−𝜏𝑟 𝑓 𝐷𝑡+𝑛+𝜏

]
= 𝑒−𝑛𝑟 𝑓E𝑅𝑁𝑡

[
E𝑅𝑁𝑡+𝑛

[ +∞∑︁
𝜏=1

𝑒−𝜏𝑟 𝑓 𝐷𝑡+𝑛+𝜏

] ]
, (12)

where the expectation operator, E𝑅𝑁𝑡+𝑛 [·], was inserted under the law of iterated expectations. Note

that the (ex-dividend) stock price at 𝑡 + 𝑛 is

𝑃𝑡+𝑛 = E
𝑅𝑁
𝑡+𝑛

[ +∞∑︁
𝜏=1

𝑒−𝜏𝑟 𝑓 𝐷𝑡+𝑛+𝜏

]
, (13)

so we have

𝑃𝑛+𝑡 = 𝑒−𝑛𝑟 𝑓E𝑅𝑁𝑡 [𝑃𝑡+𝑛] . (14)

The first component, 𝑒−𝑛𝑟 𝑓 , is 𝑍𝐶𝐵𝑛𝑡 , the price of a zero-coupon bond with maturity 𝑛. The second

component is the risk-neutral expectation of stock price, i.e., the futures price, 𝐹𝑛𝑡 (Duffie, 2001).

We construct the price of dividend strips using zero-coupon bond prices and equity index
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futures prices. First, we calculate 𝑃1
𝑡 , the price of the dividend paid in the next year,

𝑃1
𝑡 = 𝑃𝑡 − 𝑃1+

𝑡 , (15)

as the difference between the price of all dividends, 𝑃𝑡 (i.e., stock price), and the price of dividends

paid after one year. Following the same method, we calculate the price of dividends paid in the next

six months, 𝑃0.5
𝑡 from 𝑃𝑡 − 𝑃0.5+

𝑡 . In our empirical analysis, we use the valuation ratios of dividend

strips with maturity 1 and 0.5, i.e., 𝑠1𝑡 = ln(𝑃1/𝐷𝑡) and 𝑠0.5𝑡 = ln(𝑃0.5/𝐷𝑡), and the valuation ratio

of dividends paid beyond one year, 𝑠1+𝑡 = ln(𝑃1+/𝐷𝑡).20 Our analysis in the previous section shows

that these valuation ratios are different linear combinations of state variables.

Data and sample. For futures prices, we use S&P 500 index futures, which are the most actively

traded equity futures. The futures prices are from Datastream.21 The zero-coupon bond prices

are from the Fama-Bliss database. The return and level of the S&P 500 index are obtained from

CRSP. The dividend data is from S&P Global and obtained from the updated dataset of Goyal and

Welch (2007). Our sample starts in January 1988 for high-quality dividend data and, importantly,

a sufficiently liquid futures market without structural changes.22 After the market crash of October

1987, regulators overhauled several trade-clearing protocols.23 Our sample ends in December 2019.

Lastly, Fama-French factors at the monthly frequency are obtained from Ken French’s website.

The level of valuation term structure, 𝑝𝑑𝑡 , is the traditional price-dividend ratio, i.e., the

logarithm of the ratio of S&P 500 market capitalization to realized dividend in the last year. The

slope, 𝑑𝑟𝑡 , is calculated as 𝑝𝑑𝑡 minus 𝑠1𝑡 , the logarithm of the ratio of one-year dividend strip

20There is no collinearity: 𝑠1+𝑡 + 𝑠1𝑡 is the sum of two ratios in logarithms, ln(𝑃1/𝐷𝑡 ) + ln(𝑃1+/𝐷𝑡 ), which is not 𝑝𝑑𝑡 .
21We obtain the daily settlement prices for the S&P 500 futures. For return and cash-flow prediction at the monthly

frequency, we use the settlement price of the last trading day of each month. The maturities of the traded futures
contracts vary over time, so to obtain futures prices with constant maturity, we apply the shape-preserving piecewise
cubic interpolation to complete the futures curve. The results using linear interpolation are similar.

22Wang, Michalski, Jordan, and Moriarty (1994) identify structural changes of liquidity in the S&P 500 futures
market in the pre-1987 period, during the market crash, and in the post-1987 period.

23The stock market crash in October 1987 reveals anomalous trading in the futures market that was primarily driven
by portfolio insurance (Brady Report (1988)). According to the New York Stock Exchange: “In response to the market
breaks in October 1987 and October 1989, the New York Stock Exchange instituted circuit breakers to reduce volatility
and promote investor confidence. By implementing a pause in trading, investors are given time to assimilate incoming
information and the ability to make informed choices during periods of high market volatility.”
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Table 1 Summary Statistics
This table reports the number of observations, mean, standard deviation, minimum, maximum, quartiles, and monthly
autocorrelation (𝜌) of the main variables in this paper, including our main return predictor, 𝑑𝑟 (“slope”); the price-
dividend ratio 𝑝𝑑 of the S&P 500 index; the filtered series for demeaned expected returns and dividend growth
following Binsbergen and Koĳen (2010) 𝜇𝐹 and 𝑔𝐹 ; the single predictive factors extracted from 100 book-to-market
and size portfolios from Kelly and Pruitt (2013) for return and dividend growth, respectively, 𝐾𝑃 and 𝐾𝑃𝐶𝐹 ; short-
term dividend strip price to dividend ratio (0.5 year and 1 year) 𝑠0.5 = log(𝑃0.5/𝐷) and 𝑠1 = log(𝑃1/𝐷); long-term
dividend strip price to dividend ratio (beyond 1 year) 𝑠1+ = log(𝑃1+/𝐷); one-month and one-year log returns of
the S&P 500 index 𝑟𝑡+1/12 and 𝑟𝑡+1; one-month and one-year log market returns from Fama-French market portfolio
𝑟𝑀𝐾𝑇
𝑡+1/12 and 𝑟𝑀𝐾𝑇

𝑡+1 ; and the 1-year dividend growth rate of S&P 500 index and the Fama-French market portfolio
Δ𝑑𝑡+1 = log(𝐷𝑡+1/𝐷𝑡 ) and Δ𝑑𝑀𝐾𝑇

𝑡+1 = log(𝐷𝑀𝐾𝑇
𝑡+1 /𝐷𝑀𝐾𝑇𝑡 ). Our sample is monthly observations 1988:01–2019:12.

mean std min 25% 50% 75% max 𝜌

𝑑𝑟𝑡 4.027 0.494 2.952 3.727 4.044 4.208 6.632 0.919
𝑝𝑑𝑡 3.883 0.289 3.239 3.656 3.930 4.047 4.524 0.985
𝜇𝐹𝑡 -0.039 0.024 -0.091 -0.051 -0.041 -0.024 0.010 0.991
𝐾𝑃𝑡 -0.504 0.073 -0.725 -0.562 -0.482 -0.450 -0.378 0.955
𝑠0.5𝑡 -0.819 0.281 -2.629 -0.883 -0.768 -0.666 -0.280 0.604
𝑠1𝑡 -0.142 0.280 -2.241 -0.210 -0.098 0.016 0.393 0.766
𝑠1+𝑡 3.863 0.297 3.204 3.629 3.913 4.030 4.521 0.985
𝑟𝑡+1/12 0.009 0.041 -0.184 -0.015 0.013 0.034 0.108 0.022
𝑟𝑡+1 0.095 0.157 -0.568 0.046 0.126 0.187 0.429 0.929
𝑟𝑀𝐾𝑇
𝑡+1/12 0.009 0.042 -0.187 -0.016 0.014 0.036 0.108 0.051
𝑟𝑀𝐾𝑇
𝑡+1 0.096 0.159 -0.554 0.036 0.128 0.194 0.440 0.924
Δ𝑑𝑡+1 0.059 0.070 -0.237 0.025 0.068 0.112 0.168 0.994
Δ𝑑𝑀𝐾𝑇

𝑡+1 0.058 0.081 -0.207 0.018 0.051 0.107 0.262 0.962
𝐾𝑃𝐶𝐹𝑡 -0.385 0.068 -0.605 -0.422 -0.389 -0.338 -0.220 0.953
𝑔𝐹𝑡 0.019 0.059 -0.233 -0.002 0.031 0.056 0.132 0.939

price to the realized dividend. Table 1 reports the summary statistics of 𝑝𝑑𝑡 , 𝑑𝑟𝑡 , and valuation

ratios of the dividend strips (𝑠0.5𝑡 , 𝑠1𝑡 , and 𝑠1+𝑡 ), the monthly return of S&P 500 (𝑟𝑡+1/12 where in

the subscript 1/12 denotes one month or 1/12 of a year), the annual return of S&P 500 (𝑟𝑡+1),

and for comparison, the monthly and annual returns of the Fama-French market portfolio (MKT)

(𝑟𝑀𝐾𝑇
𝑡+1/12 and 𝑟𝑀𝐾𝑇

𝑡+1 ). Our sample includes monthly observations until 2019, i.e., before the market

turmoil during the Covid-19 pandemic. Our baseline analysis focuses on the returns and dividends

of the S&P 500 index because we construct the strip prices using the S&P 500 futures data.24 For

robustness, we also report results using Fama-French market portfolio returns and dividends. In

24Previous studies of return predictability (e.g., Ang and Bekaert, 2007) also use S&P 500 Index as a market proxy.
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Figure 1 Spectrum and Cross-spectrum of the Slope and Level
The left panel shows the spectral densities of 𝑑𝑟 , 𝑝𝑑, and the residuals of 𝑑𝑟 after projecting on 𝑝𝑑 (𝜖 𝑝𝑟𝑡 ). The integral
of spectral density is equal to the variance. The horizontal line starts from zero and ends at 𝜋, but is labeled with the
corresponding length of a cycle. The right panel shows the cross-spectral density between 𝑑𝑟 and 𝑝𝑑. The integral of
cross-spectral density is equal to the covariance.

Table 1, we include 𝜇𝐹𝑡 (𝑔𝐹𝑡 ) and𝐾𝑃𝑡 (𝐾𝑃𝐶𝐹𝑡 ), the return (dividend growth) predictors in Binsbergen

and Koĳen (2010) and Kelly and Pruitt (2013), respectively. These variables are constructed to

filter out (latent) state variables. To highlight our contribution, we benchmark against their results.

The log difference between the valuation ratio of the index and valuation ratio of its one-year

dividend strip is the log ratio of total market value to one-year strip price:

𝑑𝑟𝑡 = 𝑝𝑑𝑡 − 𝑠1𝑡 = ln(𝑃𝑡/𝐷𝑡) − ln(𝑃1
𝑡 /𝐷𝑡) = ln(𝑃𝑡/𝑃1

𝑡 ). (16)

The slope of valuation term structure can be interpreted easily. A mean of 4.027 translates into a

ratio of index value to that of its one-year strip equal to 56 = exp(4.027), meaning that the total

value is 56 times the value of dividends in the next year. When the valuation term structure steepens

(𝑑𝑟𝑡 increases), a greater fraction of value comes from beyond the next year. 𝑑𝑟𝑡 varies widely, with

a minimum of 2.952 in Nov. 1988 (before the 1990-1991 recession) and a maximum of 6.632 near

the end of the dot-com boom (Nov 2000). 𝑑𝑟𝑡 has a lower monthly autocorrelation (𝜌) than 𝑝𝑑𝑡 .

𝑑𝑟𝑡 and 𝑝𝑑𝑡 are correlated but contain distinct information. As shown in the cross-spectrum

in Figure 1, the correlation of 0.87 is mainly from low-frequency movements. Panel A of Figure 1
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shows the spectrum of 𝑑𝑟𝑡 , 𝑝𝑑𝑡 , and 𝜖𝑑𝑟𝑡 (the residual from linearly projecting 𝑑𝑟𝑡 on 𝑝𝑑𝑡). The area

under the spectrum curve is the variance, so the figure provides a variance decomposition in the

frequency domain. On the horizontal axis, instead of showing the frequencies from zero to 𝜋, we

mark the corresponding length of the cycle for easier interpretation. Once orthogonalized to 𝑝𝑑𝑡 ,

𝑑𝑟𝑡’s residual varies mainly at annual or higher frequencies. Panel B plots the cross-spectrum of

𝑑𝑟𝑡 and 𝑝𝑑𝑡 . The integral is the covariance between 𝑑𝑟𝑡 and 𝑝𝑑𝑡 . The correlation between 𝑑𝑟𝑡 and

𝑝𝑑𝑡 is mainly from low frequencies. This indicates that it is the high-frequency variation in 𝑑𝑟𝑡 that

brings information distinct from that revealed by 𝑝𝑑𝑡 . This is consistent with the findings in Kragt,

de Jong, and Driessen (2020) about different state variables fluctuating at different frequencies.

Figure A.2 in the Appendix shows the spectrum analysis based on daily data with similar results.

As shown in Section 2, 𝑑𝑟𝑡 and 𝑝𝑑𝑡 are essentially different combinations of state variables.

Our state-space approach is closely related to Binsbergen and Koĳen (2010). Binsbergen and

Koĳen (2010) use the realized returns and dividends to estimate a latent-state model and filter

out the conditional expected return, 𝜇𝐹𝑡 , and the conditional expected dividend growth rate, 𝑔𝐹𝑡 .

These filtered variables are also combinations of state variables (subject to estimation errors). We

replicate the analysis of Binsbergen and Koĳen (2010) and compare our state-space representation

via observable valuation ratios with information from the filtered 𝜇𝐹𝑡 and 𝑔𝐹𝑡 . Kelly and Pruitt (2013)

also take a state-space approach and use the cross-section of market-to-book ratios of individual

stocks to extract the expected return and dividend growth of the aggregate market. We have also

replicated Kelly and Pruitt (2013) and include their state variables (predictors) for comparison.

3.2 Analyzing the state space

According to Section 2, information about the state space is embedded in valuation ratios, including

those of the dividend strips, 𝑝𝑑, and 𝑑𝑟 . In our empirical analysis, we use valuation ratios of six-

month strip (𝑠0.5), one-year strip (𝑠1), and dividends paid beyond one year (𝑠1+) as the futures data

at 0.5 and 1 year maturities are the most liquid. In Panel A of Figure 2, we report the results

from principal component analysis (PCA). The first two components account for 96.3% of total
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Figure 2 Principal Component Analysis of Valuation Ratios
This figure reports the PCA results for 𝑑𝑟𝑡 , 𝑝𝑑𝑡 , 𝑠0.5𝑡 , 𝑠1𝑡 , and 𝑠1+𝑡 . Panel A plots the variance explained by each principal
component. Panel B plots the loadings of each variable on the first two principal components.

variance. In line with our analysis in Section 2, we show in Panel B of Figure 2 that valuation

ratios load differently on the two principal components, labeled as Dim1 (dimension 1) and Dim2

(dimension 2). These results indicate that the state space, mapped out by the valuation ratios, is

two-dimensional. Thus, we may pick two valuation ratios or 𝑝𝑑 and 𝑑𝑟 to span the state space.

However, as pointed out by Kelly and Pruitt (2015), a shortcoming of PCA analysis is that

information embedded in the principal components may not be the most relevant for objects of

interest, which are the expected return and cash-flow growth. Next, we take a predictive regression

approach. The expected return and expected dividend growth rate are driven by the state variables.

By projecting future returns and dividend growth rates on the valuation ratios, we are able to

evaluate which valuation ratios are the most informative on the cash-flow and return dynamics.

In Figure 3, we report 𝑅2 of predicting S&P 500 dividend growth over the next year using

different sets of valuation ratios. A round dot represents adjusted in-sample 𝑅2 (reported with

its 95% confidence interval) and a triangle represents out-of-sample 𝑅2. We report the detailed

regression results in Table A.2. Our predictive regression is run on monthly observations. In the

first specification, we include 𝑑𝑟 and 𝑝𝑑, which achieve the highest in-sample and out-of-sample
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Figure 3 In-Sample and Out-of-Sample 𝑅2 from Dividend Growth Predictive Regressions
This figure reports in-sample and out-of-sample 𝑅2 for predicting annual S&P 500 Index dividend growth using various
predictors. The predictors include our main predictor ‘slope’ 𝑑𝑟 , the price-dividend ratio 𝑝𝑑, 𝑑𝑟 + 𝑝𝑑, predictor from
Binsbergen and Koĳen (2010) (𝑔𝐹), predictor from Kelly and Pruitt (2013) (𝐾𝑃𝐶𝐹 ), and different combinations of 𝑝𝑑,
𝑠0.5 (price-dividend ratio of six-month strip), 𝑠1 (price-dividend ratio of one-year strip) and 𝑠1+ (price-dividend ratio
of dividends beyond one year). Each round dot represents in-sample 𝑅2 with a 95% bootstrapped confidence interval.
Each triangle represents out-of-sample 𝑅2 by recursively forecasting returns beginning in 1998:01.

𝑅2. Next, we show the 𝑅2 of 𝑔𝐹 , the predictor from Binsbergen and Koĳen (2010), which is the

conditional expectation filtered from a latent state model, and in the fourth specification is the 𝑅2

of the predictor from Kelly and Pruitt (2013) based on the valuation ratios of individual stocks.

In the third specification in Figure 3, we only include the slope of valuation term structure,

𝑑𝑟, and find very limited predictive power in comparison with the combination of the slope and

level. In the fifth specification, we show that the level of valuation term structure, 𝑝𝑑, also has

rather weak predictive power. The subsequent specifications show that predictive power varies

across different pairs of valuation ratios, indicating the importance of taking a predictive regression

approach rather than simply relying on the PCA of valuation ratios. Any given pair of valuation
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ratios fully spans the two principal components, as indicated in Panel B of Figure 2, but they contain

different information about return and cash-flow dynamics. Finally, in the last five specifications

in Figure 3, we show that three or four valuation ratios do not outperform two valuation ratios in

forecasting dividend growth. Overall, our results indicate that two valuation ratios (in particular,

the combination of 𝑑𝑟 and 𝑝𝑑) are sufficient for forecasting dividend growth.

The finding that 𝑑𝑟 has very limited predictive power is somewhat surprising. When the

valuation term structure steepens (i.e., 𝑑𝑟 increases), the stock market derives a greater fraction of

value from long-duration cash flows, so one would expect the expected growth rate of dividends

to rise accordingly (i.e., the term structure of cash-flow growth should steepen as well). However,

this is not the case, suggesting that what drives variation in the slope of valuation term structure is

not the trajectory of expected cash-flow growth but the discount rate (expected return). Next, we

analyze the state space by forecasting returns with a particular focus on 𝑑𝑟 as a return predictor.

In Figure 4, we report the 𝑅2 of predicting annual returns of the S&P 500 with different

sets of valuation ratios. Our regression is run monthly. We report the detailed regression results

in Table A.3. The conclusion is similar to that from cash-flow prediction: having three or more

valuation ratios does not improve predictability relative to the best-performing pairs of valuation

ratios. Combining 𝑝𝑑 and 𝑑𝑟 again achieves one of the highest 𝑅2s, suggesting that to capture

information on state variables, we can rely on the level and slope of valuation term structure.

Interestingly, the predictive power of slope alone is comparable to that of 𝑝𝑑 and 𝑑𝑟 combined.

Moreover, in the second, third, and fourth specifications in Figure 4, we find that 𝜇𝐹 , the predictor

in Binsbergen and Koĳen (2010), 𝐾𝑃, the predictor in Kelly and Pruitt (2013), and the traditional

price-dividend ratio all underperform 𝑑𝑟 . Our results suggest a tight link between the slope of

valuation term structure and expected return. This explains why it is essential to combine 𝑝𝑑 and

𝑑𝑟 for forecasting cash-flow growth. The expected return and cash-flow growth can be correlated

(Lettau and Ludvigson, 2005; Kothari, Lewellen, and Warner, 2006). Overall, this link between

the slope and expected return is critical for understanding what drives the shape of valuation term

structure and, vice versa (what drives the discount rate). We will explore further in Section 4.
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Figure 4 In-Sample and Out-of-Sample 𝑅2 from Return Predictive Regressions
This figure reports in-sample and out-of-sample 𝑅2 for predicting annual S&P 500 Index returns using various
predictors. The predictors include our main predictor ‘slope’ 𝑑𝑟 , the price-dividend ratio 𝑝𝑑, 𝑑𝑟 + 𝑝𝑑, predictor from
Binsbergen and Koĳen (2010) (𝜇𝐹), predictor from Kelly and Pruitt (2013) (𝐾𝑃), and different combinations of 𝑝𝑑,
𝑠0.5 (price-dividend ratio of six-month strip), 𝑠1 (price-dividend ratio of one-year strip) and 𝑠1+ (price-dividend ratio
of dividends beyond one year). Each round dot represents in-sample 𝑅2 with a 95% bootstrapped confidence interval.
Each triangle represents out-of-sample 𝑅2 by recursively forecasting returns beginning in 1998:01.

Before we move on to Section 4, we briefly discuss the rich information embedded in the

level and slope of valuation term structure beyond that on expected return and cash-flow growth.

In Table A.4 in the Appendix, we report the 𝑅2 from forecasting a variety of macroeconomic and

financial-market variables with 𝑑𝑟 and 𝑝𝑑, only 𝑑𝑟 , only 𝑝𝑑, and for illustration purposes, 𝑑𝑟 in

combination with 𝑠1 (the log price-dividend ratio of one-year dividend strip), and only 𝑠1. The

pair 𝑑𝑟 and 𝑝𝑑 demonstrate the strongest predictive power when forecasting variables related to

financial intermediaries’ balance-sheet capacity (with the 𝑅2 ranging from 30% to 40%).25 When

forecasting macroeconomic variables related to business-cycle dynamics, 𝑑𝑟 and 𝑝𝑑 have an 𝑅2

25This implies a link between financial intermediation and equity state variables (e.g., He, Kelly, and Manela, 2017).
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consistently above 20%. Moreover, the 𝑅2 from forecasting sentiment proxies is consistently above

10%. Finally, combining 𝑑𝑟 and 𝑝𝑑 outperforms other specifications, suggesting that the level and

slope of valuation term structure should both be included in empirical models of macroeconomic

dynamics, such as the vector autoregression models (e.g., Sims, 1980; Campbell and Ammer, 1993;

Patelis, 1997; Bernanke and Kuttner, 2005; Larrain and Yogo, 2008; Cieslak and Pang, 2021).

4 Expected Return and the Slope of Valuation Term Structure

A striking finding from our forecasting exercises is that the slope of valuation term structure, 𝑑𝑟,

strongly predicts returns. Augmenting 𝑑𝑟 with 𝑝𝑑 or other valuation ratios does not meaningfully

improve the performance. In Section 2, we show that 𝑑𝑟 is a linear combination of the state

variables. Our empirical findings suggest that 𝑑𝑟 and the conditional expected return may coincide

in their state-variable loadings; in other words, 𝑑𝑟 corresponds to the conditional expected return

(time-varying discount rate). Next, we provide further evidence on the return predictive power of

𝑑𝑟 and analyze the economic mechanism behind the tight link between 𝑑𝑟 and the discount rate.

4.1 Return prediction

Predictive regression. We provide a thorough analysis of the return predictive power of 𝑑𝑟, the

slope of valuation term structure. We start with standard predictive regression for annual index

returns:

𝑟𝑡+1 = 𝛼 + 𝛽𝑑𝑟𝑡 + 𝜖𝑡+1, (17)

Because we use overlapping monthly data, we adopt Newey and West (1987) standard errors with

18 lags to account for the moving-average structure induced by overlap (Cochrane and Piazzesi,

2005). We also calculate Hodrick (1992) standard errors. Hodrick (1992) shows that GMM-based

autocovariance correction (e.g., Newey and West, 1987) may have poor small-sample properties.

Under the serial correlation in the error term, another concern is the bias induced by the persistence
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of the predictor.26 While 𝑑𝑟 has an autocorrelation below that of the traditional price-dividend

ratio, 𝑝𝑑, we still report the adjusted estimate of 𝛽 following Stambaugh (1999). In the appendix

(Table A.5), we also report the IVX-Wald test of predictive power (Kostakis, Magdalinos, and

Stamatogiannis, 2014) that explicitly accounts for the persistence of the return predictor.

Adjusted 𝑅2 measures in-sample forecasting performance. Following the literature on the

discrepancy between in- and out-of-sample performances (Bossaerts and Hillion, 1999; Goyal and

Welch, 2007), we report the out-of-sample 𝑅2 and two tests of out-of-sample performance. We form

out-of-sample forecasts as a real-time investor, using data up to time 𝑡 in the regression to estimate

𝛽, which is then multiplied by the time-𝑡 value of the predictor to form the forecast. Out-of-sample

forecasting starts from Dec. 1997 when we have at least ten years of data. Out-of-sample 𝑅2 is

𝑅2
𝑂𝑂𝑆 = 1 −

∑
𝑡 (𝑟𝑡+1 − 𝑟𝑡+1)2∑
𝑡 (𝑟𝑡+1 − 𝑟 𝑡)2 ,

where 𝑟𝑡+1 is the forecast value and 𝑟 is the average of twelve-month returns (the first is January-

December 1998). The out-of-sample 𝑅2 lies in the range (−∞, 1], where a negative number means

that a predictor provides a less accurate forecast than the historical mean.

We report the 𝑝-value of two out-of-sample performance tests, “𝐸𝑁𝐶” and “𝐶𝑊”. 𝐸𝑁𝐶 is

the encompassing forecast test derived by Clark and McCracken (2001), which is widely used in the

literature. We test whether the predictor has the same out-of-sample forecasting performance as the

historical mean and compare the value of the statistic with critical values calculated by Clark and

McCracken (2001) to obtain a 𝑝-value range. Clark and West (2007) adjust the standard MSE t-test

statistic to produce a modified statistic (𝐶𝑊) that has an asymptotic distribution well approximated

by the standard normal distribution, so for 𝐶𝑊 , we report the precise 𝑝-value.

Table 2 presents the results. Column (1) shows that the slope of valuation term structure,

𝑑𝑟, demonstrates a striking degree of return predictive power. The in-sample estimation generates

a predictive 𝑅2 reaching 24.8%.27 Out-of-sample forecasts deliver an 𝑅2 of 14.6%, significantly

26The persistence of a return predictor can cause small-sample bias (Nelson and Kim, 1993; Stambaugh, 1999) and
spurious regression (Ferson, Sarkissian, and Simin, 2003).

27Foster, Smith, and Whaley (1997) discuss the potential data mining issues that arise from researchers searching
among potential regressors. They derive a distribution of the maximal 𝑅2 when 𝑘 out of 𝑚 potential regressors are
used as predictors and calculate the critical value for 𝑅2, below which the prediction is not statistically significant. For
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Table 2 Return Prediction
This table reports the return prediction results. The dependent variable of the regression is the log annual return of the
S&P 500 index, 𝑟𝑡+1. We consider the following predictors: ‘slope’ of valuation term structure 𝑑𝑟𝑡 , price-dividend ratio
𝑝𝑑𝑡 , filtered series for expected return following Binsbergen and Koĳen (2010) 𝜇𝐹 , and the predictive factor extracted
from 100 book-to-market and size portfolios from Kelly and Pruitt (2013) 𝐾𝑃. The 𝛽 estimate is followed by Hodrick
(1992) 𝑡-statistic, Newey and West (1987) 𝑡-statistic (with 18 lags), and the 𝛽 coefficient adjusted for Stambaugh (1999)
bias. Starting from 1998:01, we form out-of-sample forecasts of return in the next twelve months by estimating the
regression with data up to the current month and use the forecasts to compute out-of-sample 𝑅2, ENC test (Clark and
McCracken, 2001), and the 𝑝-value of CW test (Clark and West, 2007). Our monthly sample is 1988:01–2019:12.

𝑟𝑡+1

(1) (2) (3) (4) (5)

𝑑𝑟𝑡 -0.156 -0.228
Hodrick t [-3.354] [-2.924]
Newey-West t (-4.499) (-3.517)
Stambaugh bias adjusted 𝛽 -0.146

𝑝𝑑𝑡 -0.199 0.141
[-2.367] [1.721]
(-2.747) (1.209)
-0.189

𝜇𝐹𝑡 2.584
[2.313]
(2.804)
2.594

𝐾𝑃𝑡 0.895
[2.960]
(2.857)
0.905

𝑁 372 372 372 372 372
𝑅2 0.248 0.138 0.156 0.149 0.264
OOS 𝑅2 0.146 0.004 -0.032 0.041 0.180
ENC 2.968 0.833 0.651 2.978 5.985
𝑝(𝐸𝑁𝐶) <0.05 >0.10 >0.10 <0.05 <0.01
𝑝(𝐶𝑊) 0.022 0.200 0.303 0.031 0.021

outperforming the historical mean as shown by the 𝑝-values of 𝐸𝑁𝐶 and 𝐶𝑊 .28 The predictive

coefficient is also large in magnitude, indicating high volatility of the conditional expected return.

A decrease of 𝑑𝑟 by one standard deviation adds 7.7% to the expected return. Both Newey-West

and Hodrick 𝑡-statistics are significant at least at the 1% level. The negative predictive coefficient

of 𝑑𝑟 suggests that one can form a market timing strategy betting against the slope of valuation term

structure: reduce market exposure when 𝑑𝑟 increases. An out-of-sample 𝑅2 of 14.6% in column

instance, when 𝑚 = 50, 𝑘 = 5, and the number of observations is 250, the 95% critical value for 𝑅2 is 0.164.
28In our calculation of out-of-sample 𝑅2 starts from Dec. 1997 (after the first ten years of data). Figure A.8 in the

Appendix reports the out-of-sample 𝑅2 for different start dates and compares the OOS 𝑅2 of 𝑑𝑟 with that of 𝑝𝑑.
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(1) of Table 2 implies that the Sharpe ratio of this strategy is 0.58, which is much higher than the

Sharpe ratio of 0.37 from the buy-and-hold strategy in Campbell and Thompson (2008).29

Column (2) of Table 2 reports the results for 𝑝𝑑, the most commonly adopted return predictor.

Its predictive power is much weaker than that of 𝑑𝑟 across all metrics. Its in-sample 𝑅2 is almost

half of that of 𝑑𝑟, and 𝑝𝑑 barely exhibits any out-of-sample predictive power with 𝑅2 equal to 0.4%.

In both 𝐸𝑁𝐶 and 𝐶𝑊 tests, 𝑝𝑑 fails to beat the historical mean with any statistical significance.

Its coefficient is smaller in magnitude than that of 𝑑𝑟. A decrease in 𝑝𝑑 by one standard deviation

leads to an increase of expected return by 5.8%, implying a less volatile expected return than the

one from 𝑑𝑟. The IVX-Wald test of Kostakis, Magdalinos, and Stamatogiannis (2014) in Table A.5

in the appendix also supports the significant predictive power of 𝑑𝑟 while rejecting that of 𝑝𝑑.

Next, we compare 𝑑𝑟 with two return predictors that are conceptually related. Binsbergen and

Koĳen (2010) extract information about state variables that drive the conditional expected return

and expected cash-flow growth by estimating a latent-state model. Our approach differs as we do

not estimate or filter the state variables but instead rely on observable state-variable proxies, such as

𝑑𝑟, 𝑝𝑑, and valuation ratios of dividend strips. In Column (3) of Table 2, we follow the procedure

in Binsbergen and Koĳen (2010) to construct their return predictor, 𝜇𝐹 . While 𝜇𝐹𝑡 outperforms 𝑝𝑑,

its predictive power is weaker than that of 𝑑𝑟 across different metrics in our sample period.

Kelly and Pruitt (2013) deploy another filtering method that utilizes the cross-section of

market-to-book ratios of individual stocks. These valuation ratios are correlated with state variables,

but, as we show in Appendix I.2, they contain firm-level noise that is orthogonal to the expected

return. Kelly and Pruitt (2013) use partial least squares to reduce noise. Our approach differs as 𝑑𝑟,

𝑝𝑑, and valuation ratios of index dividend strips do not contain firm-level noise. In our approach,

the challenge is to find the combination of valuation ratios whose state-variable loadings coincide

with those of the conditional expected return. In the next subsection, we characterize the necessary

and sufficient condition for 𝑑𝑟, the slope of valuation term structure, to be this optimal return

predictor. Following the procedure in Kelly and Pruitt (2013), we construct their return predictor,

29In the appendix, we show how to calculate the Sharpe ratio based on the out-of-sample 𝑅2.

24



Table 3 Correlation between Return Predictors
This table reports the correlation matrix of four main return predictors. 𝑑𝑟 is the slope of S&P 500 valuation term
structure. 𝑝𝑑 is the price-dividend ratio of the S&P 500 index. 𝜇𝐹 is the filtered series for demeaned expected returns,
following Binsbergen and Koĳen (2010), 𝐾𝑃 is the return predictive factor extracted from 100 book-to-market and size
portfolios from Kelly and Pruitt (2013). Our monthly sample period is 1988:01–2019:12.

𝑑𝑟 𝑝𝑑 𝜇𝐹 𝐾𝑃

𝑑𝑟 1
𝑝𝑑 0.873 1
𝜇𝐹 -0.892 -0.967 1
𝐾𝑃 -0.565 -0.496 0.468 1

denoted by 𝐾𝑃. In column (4) of Table 2, we report the results. 𝐾𝑃 significantly outperforms 𝑝𝑑

but underperforms 𝑑𝑟𝑡 across metrics such as Newey-West 𝑡-statistic, Hodrick 𝑡-statistic, in-sample

𝑅2, out-of-sample 𝑅2, 𝐸𝑁𝐶, 𝐶𝑊 , and IVX-Wald test reported in Table A.5 in the online appendix.

These return predictors are correlated as shown in Table 3 but differ significantly in predictive

power, with the slope of valuation term structure outperforming other predictors. In the appendix,

we demonstrate the robustness of our results by repeating the analysis for alternative forecasting

targets. In Table A.6, we replace the S&P 500 annual return with the excess annual return. In Table

A.7 and A.8, we consider the Fama-French market portfolio return and excess return, respectively.30

Note that our method forecasts returns of an asset with the slope of its valuation term structure.

Thus, changing the forecasting target is for statistical robustness and not theoretically motivated.

Comparing the slope and other predictors. We have compared the return predictive power of

𝑑𝑟 with that of 𝑝𝑑, 𝜇𝐹 , and 𝐾𝑃. Figure 5 compares 𝑑𝑟 with more predictors from the literature,

including the default yield spread (dfy), the inflation rate (infl), stock variance (svar), the cross-

section premium (csp), the dividend payout ratio (de), the long-term yield (lty), the term spread

(tms), the T-bill rate (tbl), the default return spread (dfr), the dividend yield (dy), the long-term

rate of return (ltr), the earnings-to-price ratio (ep), the book to market ratio (bm), the investment-

to-capital ratio (ik), the net equity expansion ratio (ntis), the percent equity issuing ratio (eqis), and

30As will be made clear in the next subsection, our goal is to predict annual returns. However, we also show that 𝑑𝑟
demonstrates superior return predictive power at a monthly horizon. Our baseline results are reported in Table A.9,
and see Table A.10 for results on predicting monthly S&P 500 excess return. Table A.11 and Table A.12 report the
results on predicting the monthly Fama-French market portfolio return and excess return, respectively.
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Figure 5 In-Sample and Out-of-Sample 𝑅2 Wedge between 𝑑𝑟 and Other Return Predictors
This figure compares annual return predictive 𝑅2 between 𝑑𝑟𝑡 and other commonly studied predictors. Panels A and
B report, respectively, the differences in in-sample (IS) and out-of-sample (OOS) 𝑅2 between 𝑑𝑟 and an alternative
predictor. A positive value signifies that 𝑑𝑟 has a stronger predictive power than the alternative within the same sample
period. Most predictors are from Goyal and Welch (2007) and include the price-dividend ratio (pd), the default yield
spread (dfy), the inflation rate (infl), stock variance (svar), the cross-section premium (csp, available in 1988-2002), the
dividend payout ratio (de), the long-term yield (lty), the term spread (tms), the T-bill rate (tbl), the default return spread
(dfr), the dividend yield (dy), the long-term rate of return (ltr), the earnings-to-price ratio (ep), the book to market ratio
(bm), the investment-to-capital ratio (ik), the net equity expansion ratio (ntis), the percent equity issuing ratio (eqis),
and the consumption-wealth-income ratio (cay). KP is the predictive factor extracted from 100 book-to-market and
size portfolios from Kelly and Pruitt (2013). 𝑑𝑝𝐶𝑜𝑟𝑟 is the dividend-price ratio corrected for option-implied dividend
growth in Golez (2014) (available in 1994-2011). 𝜇𝐹 is the filtered series for expected returns following Binsbergen and
Koĳen (2010). SII is the short interests index from Rapach, Ringgenberg, and Zhou (2016) (available in 1988-2014).
SVIX is an option-implied lower bound of annual equity premium in Martin (2017) (available in 1996-2012).

the consumption-wealth-income ratio (cay), which are summarized in Goyal and Welch (2007),

and others that are proposed more recently, such as adjusted dividend yield, 𝑑𝑝𝐶𝑜𝑟𝑟 (Golez, 2014),

short interest index, SII (Rapach, Ringgenberg, and Zhou, 2016), and SVIX (Martin, 2017).31 We

also include 𝑝𝑑, 𝜇𝐹 , and 𝐾𝑃. In Figure 5, we report in- and out-of-sample 𝑅2 of 𝑑𝑟 minus those

of other predictors. All columns are in the positive region, indicating 𝑑𝑟 performs better.

In Table A.15, we report the correlation between 𝑑𝑟 and the other predictors. Besides 𝑝𝑑,

𝜇𝐹 , and 𝐾𝑃, all the other predictors with correlation above 0.5 or below -0.5 are all valuation ratios,

such as the market-to-book ratio and price-earnings ratio. This is consistent with the insight in Kelly

and Pruitt (2013) and with our emphasis on using valuation ratios to capture information about state

variables. Finally, in the appendix, we repeat the exercise in Figure 5 for alternative forecasting

31Note that the dividend yield (dy) is not the inverse of price-dividend ratio (𝑝𝑑) because in the denominator of dy
is the lagged market value (not the current value).
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Figure 6 Return Prediction: The Role of Nonlinearity
This figure shows the out-of-sample (OOS) 𝑅2 of the slope of S&P 500 valuation term structure 𝑑𝑟 and machine-
learning (ML) models in Kelly, Malamud, and Zhou (2024). We forecast annual S&P 500 returns at the monthly
frequency, with OOS prediction beginning in 1998:01 and OOS 𝑅2 computed following Goyal and Welch (2007). The
ML models use a 12-month training window, 𝛾 = 2, and a Random Fourier Features (RFF) count 𝑃 ranging from 2 to
12,000. The darker blue bars represent the ML models using 15 predictor variables (as in Kelly, Malamud, and Zhou,
2024). For the lighter blue bars, we augment the signal set with valuation ratios (i.e., 𝑠0.5, 𝑠1, 𝑠1+, 𝑑𝑟, and 𝑝𝑑). The
figure compares the best OOS 𝑅2 for each shrinkage parameter against the OOS 𝑅2 achieved using 𝑑𝑟 (the orange bar).

targets, such as S&P 500 excess annual return (Figure A.3), Fama-French market portfolio annual

return (Figure A.4), and Fama-French market portfolio excess annual return (Figure A.5).

The role of nonlinearity. Following Lettau and Wachter (2007), our theoretical framework is

an exponential-affine model where valuation ratios of dividend strips and the level and slope of

valuation term structure are linear functions of state variables. This framework motivates our

empirical analysis and facilitates the interpretation of our results. One concern over this type of

model is nonlinearity: the valuation ratios, 𝑝𝑑, and 𝑑𝑟 may no longer be linear functions of state

variables (or vice versa), and accordingly, the forecasting exercises should account for nonlinearity.

Kelly, Malamud, and Zhou (2024) develop a method based on ridge regressions to account

for nonlinearity. Given a set of predictors (signals), their forecasting models can be expanded

progressively to incorporate nonlinear terms (“model complexity”). In the appendix, we replicated

27



their analysis: given a value of ridge shrinkage parameter that indexes a class of forecasting models,

we plot the out-of-sample 𝑅2 against the degree of model complexity (see Figure A.6). In Figure 6,

we report the maximum 𝑅2 under each value of ridge shrinkage parameter and compare it against

the 𝑅2 obtained from the univariate predictive regression with 𝑑𝑟 as the predictor. Under each

value of ridge shrinkage parameter, we consider two cases, one with a signal base including all of

our valuation ratios and other predictors and the other including only the other predictors.

The machine learning model is essentially a signal aggregator with the optimal degree of

complexity and nonlinearity. The fact that the simple OLS with 𝑑𝑟 delivers an out-of-sample 𝑅2

above that of the nonlinear model suggests that the linear structure generated from the exponential-

affine model is an adequate approximation.32 Overall, our analysis has two implications. First, in

terms of raw signals, 𝑝𝑑, 𝑑𝑟, and valuation ratios of the dividend strips constitute a sufficiently rich

set. Therefore, we may not need to seek “big data” (i.e., alternative signals) for forecasting returns.

Second, combining these signals in a nonlinear fashion does not improve forecasting performances.

Therefore, the linear mapping between state variables and 𝑝𝑑, 𝑑𝑟, and strip valuation ratios offer a

solid foundation for motivating our empirical analysis of state space and the forecasting exercises.

Spanning tests. In the bond literature, unspanned state variables have attracted enormous atten-

tion. In particular, variables that drive the expected bond returns may not be revealed by bond yields

(as reviewed by Duffee, 2013). Next, we show that this is not the case in our analysis of expected

equity return. Specifically, we perform the following spanning tests in the appendix. In Table A.13,

we conduct bivariate predictive regressions with 𝑑𝑟 as one predictor and the other being one of the

alternative predictors. Across all bivariate predictive regressions, 𝑑𝑟, always has a coefficient that is

statistically significant at 1% level, while almost all the other predictors are driven out, showing an

insignificant coefficient. The short interest index has a significant coefficient but, as shown in Figure

5, its out-of-sample 𝑅2 is deep in the negative territory (below the 15% out-of-sample 𝑅2 of 𝑑𝑟 by

more than 25%). Inflation also has a significant coefficient in Table A.13 but also an out-of-sample

32Note that due to estimation errors, the machine learning model may underperform our simple OLS with 𝑑𝑟 as the
predictor even when 𝑑𝑟 and other valuation ratios are included as signals.
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𝑅2 close to zero.33 Table A.14 reports an alternative spanning test. We run trivariate predictive

regressions with 𝑑𝑟, 𝑝𝑑, and the third predictor being one of the alternative predictors. As in the

bivariate predictive regressions, the coefficients of all the alternative predictors are insignificant at

1% (except SII). Moreover, the predictive coefficient of 𝑝𝑑 is insignificant across all specifications.

4.2 Understanding the slope as a return predictor

Next, we explain the tight between 𝑑𝑟, the slope of valuation term structure of the equity index,

and the expected index return through the lens of state-space model. By analyzing the model, we

develop tests for the following hypothesis: steepening (flattening) of the valuation term structure is

discount-rate driven because market participants lack information on long-term growth.

A two-dimensional state space model. Our analysis in Section 3 suggests that the state space

is two-dimensional. In the following, we reduce the dimensionality of state space of the model

in Section 2. As in Lettau and Wachter (2007) and Binsbergen and Koĳen (2010), we can rotate

the state variables so that one drives the expected dividend growth rate while the other drives the

expected return through the price of risk. Specifically, the dividend growth, 𝑔𝑡 , is given by

𝑔𝑡 = 𝑧𝑡 + 𝑔 −
1
2
𝜎⊤
𝐷Σ𝜎𝐷 , (18)

where 𝑧𝑡 has the following law of motion

𝑧𝑡+1 = 𝜌𝑧𝑧𝑡 + 𝜎⊤
𝑧 𝜖𝑡+1 . (19)

The second state variable, 𝑦𝑡 , with a law of motion

𝑦𝑡+1 = 𝜌𝑦𝑦𝑡 + 𝜎⊤
𝑦 𝜖𝑡+1 , (20)

drives the price of risk 𝜆𝑡 , so equation (5) becomes

𝜆𝑡 = 𝜆 + 𝑦𝑡 , (21)

33De la O and Myers (2024) point out that errors in inflation expectations are important drivers of asset prices.
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and the stochastic discount factor (SDF) is given by

𝑀𝑡+1 = exp
{
−𝑟 𝑓 −

1
2
𝜆2
𝑡 (𝜎⊤

𝜆 Σ𝜎𝜆)2 − 𝜆𝑡𝜎⊤
𝜆 𝜖𝑡+1

}
. (22)

The price of risk for the 𝑛-th shock is 𝜆𝑡𝜎𝜆 (𝑛), where 𝜎𝜆 (𝑛) is the 𝑛-th element of 𝜎𝜆. The 𝑁-by-1

shock vector 𝜖𝑡+1 contains news at 𝑡 + 1. The variables’ shock loadings may differ, for example,

𝜎𝑧 ≠ 𝜎𝑦. 𝑧𝑡 and 𝑦𝑡 can be correlated through their overlapping exposure to shocks.

In Appendix I, we solve the log price-dividend ratio of the aggregate market

𝑝𝑑𝑡 = 𝐴𝑝𝑑 + 𝐵𝑝𝑑𝑦𝑡 + 𝐶𝑝𝑑𝑧𝑡 , (23)

where 𝐴𝑝𝑑 , 𝐵𝑝𝑑 , and 𝐶𝑝𝑑 are constant, and the log price-dividend ratio of the one-year strip,

𝑠1𝑡 = 𝐴1 + 𝐵1𝑦𝑡 + 𝐶1𝑧𝑡 . (24)

Therefore, the slope of valuation term structure is given by

𝑑𝑟𝑡 = 𝑝𝑑𝑡 − 𝑠1𝑡 = 𝐴𝑝𝑑 − 𝐴1 + (𝐵𝑝𝑑 − 𝐵1)𝑦𝑡 + (𝐶𝑝𝑑 − 𝐶1)𝑧𝑡 , (25)

where 𝐵𝑝𝑑 ≠ 𝐵𝑝𝑑 − 𝐵1 and 𝐶𝑝𝑑 ≠ 𝐶𝑝𝑑 − 𝐶1. Since 𝑑𝑟𝑡 and 𝑝𝑑𝑡 have different loadings on 𝑧𝑡 and

𝑦𝑡 , we can solve 𝑧𝑡 and 𝑦𝑡 from 𝑑𝑟𝑡 and 𝑝𝑑𝑡 . In particular, 𝑑𝑟𝑡 and 𝑝𝑑𝑡 contain all the necessary

information for forecasting return and dividend growth as we find empirically in Section 3.

The next proposition shows that when 𝜌𝑧, the autoregressive coefficient of expected dividend

growth rate 𝑧𝑡 , is zero, we have 𝑑𝑟𝑡 and E𝑡 [𝑟𝑡+1] being univariate functions of one another.

Proposition 1 (Discount rate and the slope of valuation term structure) The expected return at

time 𝑡 (time-varying discount rate) is a linear function of 𝑦𝑡 , i.e., E𝑡 [𝑟𝑡+1] = 𝐴𝑒𝑟 + 𝐵𝑒𝑟 𝑦𝑡 , where 𝐴𝑒𝑟

and 𝐵𝑒𝑟 are constant. Under 𝜌𝑧 = 0, E𝑡 [𝑟𝑡+1] is a univariate linear function of 𝑑𝑟𝑡 .

Market participants’ information about future cash flows is summarized by 𝑧𝑡 , which de-

termines the expected growth rate between 𝑡 and 𝑡 + 1. If 𝑧𝑡 lacks persistence (𝜌𝑧 = 0), market

participants do not have information about growth beyond 𝑡 + 1.34 Their expectation of growth

from 𝑡 + 1 onward is constant. Therefore, under this condition, when the valuation term structure

34Under 𝜌𝑧 = 0, our model of cash-flow expectations is in line with the belief model in De La O and Myers (2021).
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Table 4 Summary Statistics: Cash-Flow Growth Forecasts
This table reports the number of observations, mean, standard deviation, minimum, maximum, quartiles, and monthly
autocorrelation (𝜌) of measures of cash-flow growth expectations. E𝐴𝑡 Δ𝑒𝑡 ,𝑡+1, E𝐴𝑡 Δ𝑒𝑡+1,𝑡+2, and E𝐴𝑡 Δ𝑒𝑡+2,𝑡+3 are
forecasts of 1-year earnings growth for fiscal year 1, 2, and 3 provided by IBES Global Aggregate (IGA). IGA Δ𝑒𝑡 and
Compustat Δ𝑒𝑡 are the realized annual earnings growth from IGA and Compustat, respectively. E𝐴𝑡 Δ𝑒𝑡 ,𝑡+1 and 𝐿𝑇𝐺𝑡
are forecasts of 1-year and long-term earnings growth that we self-aggregate from the IBES Unadjusted US Summary
Statistics File. Data sample: 1988:01–2019:12.

obs mean std min 25% 50% 75% max 𝜌

E𝐴𝑡 Δ𝑒𝑡 ,𝑡+1 384 0.103 0.096 -0.167 0.056 0.103 0.154 0.425 0.897
E𝐴𝑡 Δ𝑒𝑡+1,𝑡+2 384 0.134 0.043 -0.069 0.104 0.127 0.157 0.269 0.830
E𝐴𝑡 Δ𝑒𝑡+2,𝑡+3 384 0.130 0.036 0.052 0.100 0.122 0.159 0.217 0.953
IGA Δ𝑒𝑡 ,𝑡+1 384 0.072 0.135 -0.380 -0.008 0.092 0.148 0.425 0.929
Compustat Δ𝑒𝑡 ,𝑡+1 384 0.068 0.481 -2.175 -0.042 0.122 0.187 2.190 0.976
𝐿𝑇𝐺𝑡 384 0.125 0.018 0.093 0.115 0.120 0.129 0.187 0.986

steepens (i.e., 𝑑𝑟𝑡 increases), a greater fraction of market value is from cash flows from 𝑡 +1 onward

not due to an improved expectation of long-run growth but due to a lower discount rate (a lower

𝑦𝑡); similarly, when the valuation term structure flattens (i.e., 𝑑𝑟𝑡 decreases), it is because of a

higher discount rate rather than negative information on long-run growth. Next, we estimate 𝜌𝑧 and

demonstrate both empirically and theoretically that the return predictive power of 𝑑𝑟𝑡 is tied to 𝜌𝑧.

Estimating the persistence of growth expectations. When estimating 𝜌𝑧, we use analyst fore-

casts as a proxy for market participants’ expectations. As the coverage of dividend forecasts started in

2003, we follow the literature and use analysts’ earnings forecasts (available since 1976). The follow-

ing accounting identity connects the earnings and dividends: 𝐷𝑡 = Earnings𝑡×(1−plowback rate𝑡).

As documented by Pástor, Sinha, and Swaminathan (2008) and Chen, Da, and Zhao (2013), the

plowback rate is quite stable. Therefore, the dividend growth rates are close to those of earnings.

IBES Global Aggregates (IGA) provides a forecast of earnings growth for the S&P 500 index

based on firm-level earnings forecasts. The aggregation procedure weighs individual companies

by their market capitalization.35 To transform earnings forecasts to forecasts of growth rates, IGA

takes the ratio of forecast for period 𝑡 + 𝑘 to forecast for 𝑡 + 𝑘 − 1. We consider forecasting horizons

35To deal with the fact that companies have different fiscal year-end, IGA calendarizes all company-level data to
a December calendar year before aggregation. This approach follows the Compustat rule. Please refer to “Thomson
Reuters Datastream IBES Global Aggregates Reference Guide” for more detail.
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of one, two, and three years (i.e., 𝑘 = 1, 2, 3).36 The data is available at a weekly frequency. We

consider both weekly and monthly frequencies. For estimation at monthly frequency, we take the

last weekly observation of each month. In a different estimation method, we utilize analyst forecasts

for long-term growth (LTG). We aggregate firm-level LTG from IBES to the index level.37 This

data is available at the firm level and at the monthly frequency. It is aggregated to the index level

via the same aggregation procedure described above. Table 4 provides summary statistics.

Next, we map analyst expectations to the model counterparts and derive a system of equations

for estimating 𝜌𝑧. Analyst forecasts may not perfectly capture market participants’ expectations.

Therefore, we add a noise term between the analyst expectations and expectations in our model:

E𝐴𝑡 (Δ𝑒𝑡+𝑘 ) = E𝑡 (Δ𝑒𝑡+𝑘 ) + 𝜀𝐴𝑡,𝑘 , (26)

where we consider 𝑘 = 1, 2, 3, and E𝑡 (·) represents the market participants’ expectation as in the

model. From equation (18) in the model, we obtain

E𝐴𝑡 (Δ𝑒𝑡+1) = 𝑔 + 𝑧𝑡 + 𝜀𝐴𝑡,1

E𝐴𝑡 (Δ𝑒𝑡+2) = 𝑔 + E𝑡 (𝑧𝑡+1) + 𝜀𝐴𝑡,2 = 𝑔 + 𝜌𝑧𝑧𝑡 + 𝜀𝐴𝑡,2

E𝐴𝑡 (Δ𝑒𝑡+3) = 𝑔 + E𝑡 (𝑧𝑡+2) + 𝜀𝐴𝑡,3 = 𝑔 + 𝜌2
𝑧 𝑧𝑡 + 𝜀𝐴𝑡,3.

Using the first equation to substitute out 𝑧𝑡 in the second and third equations, we obtain a system:
E𝐴𝑡 (Δ𝑒𝑡+2)

E𝐴𝑡 (Δ𝑒𝑡+3)

︸          ︷︷          ︸
≡ y𝐴𝑡

= (1 − 𝜌𝑧) 𝑔 + 𝜌𝑧


E𝐴𝑡 (Δ𝑒𝑡+1)

E𝐴𝑡 (Δ𝑒𝑡+2)

︸          ︷︷          ︸
≡ x𝐴𝑡

+

𝜀𝐴
𝑡,1 − 𝜌𝑧𝜀

𝐴
𝑡,0

𝜀𝐴
𝑡,2 − 𝜌𝑧𝜀

𝐴
𝑡,1

︸           ︷︷           ︸
≡ 𝜖 𝐴𝑡

. (27)

Therefore, we can estimate 𝜌𝑧 by regressing y𝐴𝑡 on x𝐴𝑡 . The identification assumption is that

under the econometricians’ belief, the expectation of the 𝜖 𝐴𝑡 is zero conditional on x𝐴𝑡 . Note that

the deviations of analysts’ expectations from market participants’ expectations are allowed to be

correlated across the starting dates of annual dividend growth, i.e., 𝑡, 𝑡 + 1, and 𝑡 + 2.38

36Note that for 𝑘 = 1, the growth rate is simply calculated as the forecast divided by realized earnings.
37IBES firm-level forecasts of the annualized average growth rate of earnings over the next three to five years have

been adopted in the recent literature (e.g., Nagel and Xu, 2022, Bordalo et al., 2024, and De la O and Myers, 2024).
38The identification of 𝜌𝑧 is robust to the correlation between 𝜖 𝐴𝑡 and the structural shocks 𝜖𝑡 in the model, i.e., the
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Table 5 Estimating the Persistence of Expected Cash-Flow Growth (Analyst Forecasts)
This table reports the estimates of 𝜌𝑧 , the autoregressive coefficient of expected cash-flow growth, based on equation
(27). The estimation uses aggregate earnings growth forecasts of the S&P 500 Index obtained from IGA. Columns
(1) and (3) report the estimates of 𝜌𝑧 using monthly data, while columns (2) and (4) report the estimates of 𝜌𝑧 using
weekly data. Columns (1) and (2) use earnings growth forecasts for 1, 2, and 3 years ahead (“Y1:Y3”) to estimate
the two-equation system (27), while columns (3) and (4) only use earnings growth forecasts for 1 and 2 years ahead
(“Y1:Y2”) to estimate the first equation in (27). 𝑡-statistics based on Driscoll-Kraay standard errors with autocorrelation
of up to 18 lags are reported in parentheses. Data sample: 1988:01–2019:12.

(1) (2) (3) (4)

(1 − 𝜌𝑧)𝑔 0.129 0.122 0.141 0.133
(13.995) (16.906) (15.536) (16.745)

𝜌𝑧 0.028 0.015 -0.071 -0.073
(0.690) (0.381) (-1.379) (-1.295)

𝑁 768 1887 384 943
𝑅2 0.003 0.001 0.025 0.028
Sample Monthly Weekly Monthly Weekly
Periods Y1:Y3 Y1:Y3 Y1:Y2 Y1:Y2

The results are reported in Panel A of Table 5. We estimate equation (27) with both monthly

(columns 1 and 3) and weekly observations (columns 2 and 4) of analyst forecasts. In columns

(1) and (2), our estimation includes both equations in (27), while in Column (3) and (4), we only

include the first equation, i.e., only using forecasts at one- and two-year horizons for better data

quality. Across the specifications, the estimate 𝜌̂𝑧 is statistically indistinguishable from zero.

Next, we consider an alternative way to estimate 𝜌𝑧 by exploring the relationship between

forecasts of short- and long-term earnings growth (LTG). Given the autoregressive structure (19),

the expected growth rate from period 𝑛 to 𝑛 + 1 depends on the expected growth rate over the very

next period via a coefficient 𝜌𝑛𝑧 . If 𝜌𝑧 is zero, then 𝜌𝑛𝑧 is zero, which implies that the average growth

rate over three years and beyond does not depend on the expected growth rate over the next year.

Therefore, we regress monthly observations of LTG forecast on the near-term expected growth rate,

i.e., E𝐴𝑡 [Δ𝑒𝑡+1], and denote the regression coefficient by 𝜌𝐿𝑇𝑧 . In Table 6, our estimate is statistically

indistinguishable from zero, which implies 𝜌𝑧 = 0, consistent with our findings in Table 5.

Finally, we conduct a rolling-window estimation of 𝜌𝑧 following the method in Table 5. A

rolling window contains three years of weekly observations of analyst forecasts.39 We summarize

structural shocks to realized dividend, market participants’ beliefs on cash-flow dynamics, and their price of risk.
39The results are similar if we use alternative window lengths from one to five years (available upon request). Our
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Table 6 Estimating the Persistence of Expected Cash-Flow Growth (LTG Forecasts)
This table reports the estimates of 𝜌𝐿𝑇𝑧 , the regression coefficient in

log(1 + 𝐿𝑇𝐺𝑡 ) = const + 𝜌𝐿𝑇𝑧 E𝐴𝑡 [Δ𝑒𝑡+1] + 𝜀𝑡 ,

where 𝐿𝑇𝐺𝑡 is the long-term growth forecasts (LTG) of the S&P 500 Index, self-aggregated from stock-level LTG
forecasts from the IBES Unadjusted Summary File. The short-term forecast, E𝐴𝑡 [Δ𝑒𝑡+1], is the IGA 1-year earnings
growth forecast (IGA E𝐴𝑡 [Δ𝑒𝑡+1]). 𝑡-statistics based on Newey-West standard errors with autocorrelation of up to 18
lags are reported in parentheses. Our monthly observations are from 1988:01 to 2019:12.

(1)

log(1 + 𝐿𝑇𝐺𝑡 )

Intercept 0.116
(28.615)

E𝐴𝑡 [Δ𝑒𝑡+1] 0.017
(0.711)

𝑁 384
𝑅2 0.011

the statistics of the rolling-window estimates in Table 7. Naturally, the model underlying agents’

belief formation may vary over time, so the estimate of 𝜌̂𝑧 fluctuates. However, the mean and

median of the rolling-window estimates are close to zero, in line with the full-sample estimate

in Table 5. Our findings suggest that the expectations of cash-flow growth lack persistence, i.e.,

𝜌𝑧 is close to zero, which implies a one-to-one mapping between 𝑑𝑟 and the expected return (see

Proposition 1). In the next proposition, we show that the value of 𝜌𝑧 is directly linked to the

forecasting error from using 𝑑𝑟 to predict returns. The proof is in the appendix.

Proposition 2 (𝜌𝑧 and return forecast errors) Let 𝜈𝑡+1 denote the forecast error when predicting

𝑟𝑡+1 with 𝑑𝑟𝑡 , and let 𝜌𝑧 denote the autoregressive coefficient of expected cash flow growth 𝑧𝑡 in

equation (19). If 𝜌𝑧 > 0, then 𝜈𝑡+1 is positive. If 𝜌𝑧 < 0, then 𝜈𝑡+1 is negative.

The proposition implies that in a subsample where the estimate of 𝜌𝑧 is positive (negative),

we would expect the return forecasting error to be positive (negative). In Figure 7, we plot the

rolling-window estimate of 𝜌𝑧 estimates against the return forecasting residuals (denoted by 𝜀𝑡)

from the corresponding rolling window with 𝑑𝑟 as the predictor. The two time series track each

sample period is 1988–2019. The first estimate of 𝜌𝑧 uses three years of IGA data starting in 1985.
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Table 7 Rolling Estimates of the Persistence of Expected Cash-Flow Growth
This table reports the summary statistics of the rolling-window estimates of 𝜌𝑧 using weekly observations, where each
rolling window spans three years. In each window, we estimate 𝜌𝑧 following equation (27), using aggregate earnings
growth forecasts of the S&P 500 Index obtained from IGA. Data sample: 1988:01–2019:12.

count mean std min 25% 50% 75% max 𝜌

𝜌̂𝑧,𝑡 384 0.025 0.157 -0.260 -0.066 0.001 0.074 0.791 0.975

other closely, with a correlation of 0.42.40 This provides further evidence of the connection between

return predictability from 𝑑𝑟 and the lack of persistence in the expected cash-flow growth rates.

In our model, under 𝜌𝑧 = 0, market participants do not have information about growth

beyond the very next year. Under this condition, the slope of valuation term structure, 𝑑𝑟, reflects

the discount rate. When 𝑑𝑟 increases, the steepening of the valuation term structure suggests that a

greater fraction of market value comes from cash flows at longer horizons. If market participants

are not informed about growth beyond the very next year, the steepening must be driven by a

decline in the discount rate that boosts valuation of long-duration cash flows more than that of

near-term cash flows simply because the valuation of long-duration cash flows is more sensitive to

discount-rate variation. When 𝑑𝑟 decreases, the flattening of valuation term structure is driven by

a higher discount rate. This is the mechanism behind the return predictive power of 𝑑𝑟. In Section

4.3, we will step outside of our model given by equations (18) and (19) and conduct tests in broader

settings on whether market participants are informed about long-term growth.

Discussion: Alternative methods to estimate 𝜌𝑧. As previously discussed, our tests allow

deviation of analyst forecasts from market participants’ expectations. The empirical literature finds

that such deviation tends to be small.41 For robustness, we consider an alternative method to

estimate 𝜌𝑧 without using analyst forecasts. In Appendix II, we fit the latent state model given by

40In Figure A.7 in the Appendix, we plot 𝜌𝑧,𝑡 against the out-of-sample forecast errors and obtain a similarly positive
correlation. We also regress the rolling-window return prediction errors, both in-sample and out-of-sample, on the
rolling-window estimate of 𝜌𝑧 and find a positive regression coefficient (see Table A.16 in the Appendix).

41Analyst forecasts reflect their beliefs as compensation are linked to forecast precision, and their forecasts are likely
to reflect market participants’ beliefs broadly (e.g., Mikhail, Walther, and Willis, 1999; Cooper, Day, and Lewis, 2001;
Bradshaw, 2004; McCarthy and Hillenbrand, 2021). Forecasts may be distorted due to behavioral, incentive, and
institutional frictions (e.g., Gu and Wu, 2003; Malmendier and Shanthikumar, 2007, 2014; Binsbergen et al., 2022).
Bias is contained as long as such frictions do not correlate systematically with analysts’ true beliefs.
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Figure 7 Rolling Estimates of Persistence of Expected Growth and Return Prediction Errors
This figure plots the rolling estimate of the autoregressive coefficient of expected cash flow growth, 𝜌̂𝑧,𝑡 , and the return
prediction errors using the slope of S&P 500 valuation term structure (𝑑𝑟𝑡 ) as the predictor. 𝜌̂𝑧,𝑡 is estimated using
analyst forecasts of S&P 500 aggregate earnings in rolling regressions with a three-year window. This figure also plots
the predictive residuals (denoted by 𝜀𝑡 ) from the rolling-sample predictive regressions. The correlation between the
two time series is also reported on the graph. Our monthly sample is 1988:01–2019:12.

(18) and (19) to dividend data to statistically filter out the expected cash-flow growth rate and its

persistence. The results corroborate our findings on 𝜌𝑧 being close to zero.

4.3 Cash-flow growth predictability: Short horizon vs. long horizon

Previously, our focus is on estimating 𝜌𝑧, the autoregressive coefficient of expected cash-flow

growth rate. In our model, 𝜌𝑧 = 0 implies that the market participants do not have information

about cash-flow growth beyond the next year. While our analysis of state space in Section 3 supports

the model specification, we step outside of our model and provide more evidence in this subsection

on the fact that market participants are not well informed about long-term growth. We do so by

characterizing cash-flow predictability at different horizons. If the market participants are informed

about cash-flow growth at a certain horizon, we should be able to predict cash-flow growth with

information revealed in analysts’ forecasts and the state variable proxies such as 𝑑𝑟 and 𝑝𝑑.

In Table 8, we show strong predictability of near-term growth. In column (1), we simply
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Table 8 Forecasting Earnings and Dividend Growth over the Next Year
This table reports the results of dividend and earnings growth prediction. The dependent variables are the 1-year-ahead
realized earnings growth from IGA (columns 1-3), realized dividend growth from Bloomberg (columns 4-6), and
realized earnings growth from Compustat (columns 7-9). The independent variables are analyst forecasts of one-year
earnings growth from IGA (E𝐴𝑡 (Δ𝑒𝑡+1)), duration 𝑑𝑟, and the price-dividend ratio 𝑝𝑑. 𝑡-statistics are calculated based
on Newey-West standard errors with 18 lags and are reported in parentheses. Data sample: 1988:01–2019:12.

IGA Δ𝑒𝑡+1 Δ𝑑𝑡+1 Compustat Δ𝑒𝑡+1

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Intercept -0.056 -0.426 -0.328 0.028 -0.312 -0.295 0.122 0.478 0.394
(-4.127) (-1.357) (-2.413) (1.300) (-1.526) (-1.663) (0.814) (0.374) (0.352)

E𝐴𝑡 (Δ𝑒𝑡+1) 1.204 1.119 0.326 0.204 -0.591 -0.963
(20.101) (15.193) (2.537) (2.824) (-0.629) (-1.067)

𝑑𝑟𝑡 -0.248 -0.110 -0.181 -0.156 -0.333 -0.452
(-2.328) (-2.625) (-3.535) (-4.188) (-1.129) (-2.016)

𝑝𝑑𝑡 0.385 0.187 0.285 0.249 0.238 0.409
(2.354) (2.599) (2.782) (3.095) (0.405) (0.958)

𝑁 372 372 372 372 372 372 372 372 372
𝑅2 0.731 0.199 0.769 0.193 0.386 0.454 0.014 0.053 0.086

regress the realized one-year growth rate of aggregate earnings from firms covered by IGA on the

ex ante analysts’ forecast. The 𝑅2 is 0.73, so analysts and market participants in general are able to

forecast near-term cash-flow growth very well. In column (2), we use our pair of state variables,

𝑑𝑟 and 𝑝𝑑, to forecast cash-flow growth and obtain a 𝑅2 of 0.20. Combining the information in

𝑑𝑟 and 𝑝𝑑 with the analysts’ forecast in column (3), the in-sample prediction 𝑅2 rises to 0.77. In

the other columns of Table 8, we change the forecasting target. Naturally, cash-flow predictability

declines in the other cases because the predictor (IGA analyst forecast, in particular) targets earnings

growth of the IGV-covered firms rather than dividend growth (columns 4-6) or earnings growth of

Compustat firms (columns 7-9). Overall, our findings suggest that market participants are likely to

be well-informed about near-term cash-flow growth. One explanation is that firms tend to provide

forward guidance on their earnings outlook, increasingly so in recent years.42

Next, we examine the predictability of growth at longer horizons. We add the LTG forecast

as a predictor, i.e., forecast of growth over three to five years, and also include E𝐴𝑡 (Δ𝑒𝑡+1), 𝑝𝑑, and

𝑑𝑟 from Table 8. The results are reported in Table 9.43 For comparison, we first predict earnings

42Firms typically offer guidance on near-term performances (Penman, 1980; Miller, 2002; Hutton et al., 2003).
43In Figure A.9, we report the results of alternative predictive models that take advantage of more valuation ratios
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Table 9 Forecasting Earnings Growth across Horizons
This table reports the results of regressions that predict earnings growth at various horizons. The dependent variables
are realized earnings growth from IGA of next year (columns 1-3), between the first and second years (columns 4-6),
and between the second and third years (columns 7-9). The independent variables are analysts’ forecasts of one-year
earnings growth from IGA (IGA E𝐴𝑡 (Δ𝑒𝑡+1)), the self-aggregated long-term earnings growth forecasts (𝐿𝑇𝐺𝑡 ) of the
S&P 500 Index, the slope of S&P 500 valuation term structure 𝑑𝑟 , and the level 𝑝𝑑𝑡 . 𝑡-statistics calculated based on
Newey-West standard errors with 18 lags are reported in parentheses. Data sample: 1988:01–2019:12.

IGA Δ𝑒𝑡 ,𝑡+1 IGA Δ𝑒𝑡+1,𝑡+2 IGA Δ𝑒𝑡+2,𝑡+3

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Intercept 0.053 -0.426 -0.309 0.325 -0.063 -0.037 0.185 0.513 0.496
(1.360) (-1.357) (-2.786) (2.446) (-0.211) (-0.141) (1.596) (1.577) (1.685)

E𝐴𝑡 (Δ𝑒𝑡+1) 1.222 1.174 0.030 -0.047 -0.319 -0.274
(20.312) (15.749) (0.192) (-0.348) (-2.594) (-1.947)

𝐿𝑇𝐺𝑡 -0.889 -1.344 -2.155 -2.295 -0.711 -0.295
(-3.171) (-3.092) (-2.186) (-1.578) (-0.768) (-0.234)

𝑑𝑟𝑡 -0.248 -0.077 -0.144 -0.103 0.096 0.068
(-2.328) (-1.568) (-2.878) (-2.319) (1.449) (1.215)

𝑝𝑑𝑡 0.385 0.189 0.181 0.207 -0.216 -0.166
(2.354) (2.797) (1.690) (2.351) (-1.666) (-1.399)

𝑁 372 372 372 360 360 360 348 348 348
𝑅2 0.74 0.20 0.78 0.08 0.08 0.14 0.07 0.07 0.11

growth over the next year from columns (1) to (3), and consistent with Table 8, predictability

is strong. In columns (4) to (6), we predict earnings growth from 𝑡 + 1 to 𝑡 + 2 and find that

predictability declines dramatically. Comparing columns (1) and (4), the 𝑅2 declines from 0.74 to

0.08. Our forecasting exercise in columns (7) to (9) delivers the same message. The predictability

of growth over an even longer horizon, i.e., from 𝑡 + 2 to 𝑡 + 3, is even weaker.

Our findings implies a cash-flow information cliff at the one-year horizon. Therefore, the

slope of valuation term structure computed around this cutoff reveals the expected return: when

the term structure steepens or flattens, it is driven by discount-rate variation that affects valuation

of long-term cash flows more than that of short-term cash flows and not news on long-term growth.

that may contain richer information on state variables than the pair 𝑝𝑑 and 𝑑𝑟 . Our conclusion remains robust.
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5 Conclusion

An asset can be sliced into strips across payout horizons. Strip valuation ratios form a term

structure and map out the underlying state variables that drive the expected return and cash-flow

growth of this asset. In particular, the level and slope of valuation term structure form a pair of

state-variable proxies. For the equity market index, our approach reveals strong return predictability

and cash-flow predictability at the annual horizon. We also find that beyond the very next year, our

state-variable proxies and survey expectations fail to predict cash-flow growth. Such information

cliff suggests steepening (flattening) of the valuation term structure does not reflect information on

the growth trajectory but is due to a decrease (increase) in the discount rate or driven by exuberance

(pessimism) about long-run growth. This points to using the slope of valuation term structure as the

return predictor rather than the level (i.e., the traditional price-dividend ratio of the equity index).

Our paper challenges the traditional approach to return and cash-flow prediction. For return

prediction, an asset’s own valuation ratio—the level of the asset’s valuation term structure—is not

the optimal predictor; instead, one should identify the cash-flow information cliff and compute the

slope around the cutoff. For cash-flow prediction, the level and slope perform well together.

Our method can be applied to any asset that can be sliced along payout horizons. Recent

studies show that strip prices can be computed for individual stocks and certain assets that are not

publicly traded.44 When applying our method, the first step is to examine the dimensionality of state

space by analyzing strip valuation ratios that proxy for state variables. Next, state-variable proxies,

such as the level and slope of valuation term structure, can be used for forecasting. For return

prediction, one can further examine the cash-flow information cliff either directly from evidence

on cash-flow predictability at different horizons or via sharper tests based on empirically motivated

state-space models.45 After identifying the information cliff, the slope of valuation term structure

is computed around this cutoff and then used to predict the return of the asset.

44Strip prices of a stock can be calculated from options or single-stock dividend futures and swaps (Gormsen and
Lazarus, 2023). Strip values can also be computed for private equity (Gupta and Van Nieuwerburgh, 2021).

45For the S&P 500 index, it suffices to consider two state variables that follow AR(1) processes and correspond to
expectations of return and dividend growth rate, respectively. For assets with higher state-space dimensionality, AR(p)
processes can be considered, and the test for information cliff involves estimating the AP(p) coefficients.
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Internet Appendix

Appendix I: Derivation

I.1 Solving the valuation ratios
The price-dividend ratio of the dividend strip with maturity 𝑛, 𝑃𝑛,𝑡/𝐷𝑡 , satisfies the following
recursive equation

𝑃𝑛,𝑡

𝐷𝑡

= E𝑡

[
𝑀𝑡+1

𝐷𝑡+1
𝐷𝑡

𝑃𝑛−1,𝑡+1

𝐷𝑡+1

]
. (A.1)

We conjecture that

ln
(
𝑃𝑛,𝑡

𝐷𝑡

)
= 𝐴 (𝑛) + 𝐵 (𝑛)𝑇 𝑋𝑡 . (A.2)

Substituting this expression and expressions of stochastic discount factor and dividend growth
into the recursive equation, we have

exp
{
𝐴 (𝑛) + 𝐵 (𝑛)⊤ 𝑋𝑡

}
=E𝑡

[
exp

{
−𝑟 𝑓 −

1
2
𝜆⊤𝑡 Σ𝜆𝑡 − 𝜆⊤𝑡 𝜖𝑡+1 + 𝑔𝑡 + 𝜎⊤

𝐷𝜖𝑡+1 + 𝐴 (𝑛 − 1) + 𝐵 (𝑛 − 1)⊤ 𝑋𝑡+1

}]
=E𝑡

[
exp

{
𝑔𝑡 − 𝑟 𝑓 −

1
2
𝜆⊤𝑡 Σ𝜆𝑡 + 𝐴 (𝑛 − 1) + 𝐵 (𝑛 − 1)⊤ Π𝑋𝑡 + (𝜎𝐷 − 𝜆𝑡 + 𝜎𝑋𝐵 (𝑛 − 1))⊤ 𝜖𝑡+1

}]
= exp

{
𝑔𝑡 − 𝑟 𝑓 −

1
2
𝜆⊤𝑡 Σ𝜆𝑡 + 𝐴 (𝑛 − 1) + 𝐵 (𝑛 − 1)⊤ Π𝑋𝑡

}
{
+1

2
(𝜎𝐷 − 𝜆𝑡 + 𝜎𝑋𝐵 (𝑛 − 1))⊤ Σ (𝜎𝐷 − 𝜆𝑡 + 𝜎𝑋𝐵 (𝑛 − 1))

}
= exp

{
𝑔𝑡 − 𝑟 𝑓 + 𝐴 (𝑛 − 1) + 𝐵 (𝑛 − 1)⊤ Π𝑋𝑡 − (𝜎𝐷 + 𝜎𝑋𝐵 (𝑛 − 1))⊤ Σ𝜆𝑡

}{
+1

2
(𝜎𝐷 + 𝜎𝑋𝐵 (𝑛 − 1))⊤ Σ (𝜎𝐷 + 𝜎𝑋𝐵 (𝑛 − 1))

}
(A.3)

The coefficients on 𝑋𝑡 should match 𝐵 (𝑛) on the left hand side, so we have

𝐵 (𝑛) =
(
Π⊤ − 𝜃Σ𝜎𝑋

)
𝐵 (𝑛 − 1) + 𝜙 − 𝜃Σ𝜎𝐷 . (A.4)

The constants must sum up to 𝐴 (𝑛) on the left hand side, so we have

𝐴 (𝑛) =𝐴 (𝑛 − 1) + 𝑔 − 𝑟 − (𝜎𝐷 + 𝜎𝑋𝐵 (𝑛 − 1))⊤ Σ𝜆+ (A.5)
1
2
(𝜎𝐷 + 𝜎𝑋𝐵 (𝑛 − 1))⊤ Σ (𝜎𝐷 + 𝜎𝑋𝐵 (𝑛 − 1)) .

The fact that 𝑃0
𝑡 = 𝐷𝑡 implies the boundary conditions, 𝐴 (0) = 𝐵 (0) = 0, which pins down a

solution of 𝐴 (𝑛) and 𝐵 (𝑛).

A.1



Finally, we solve the log price-dividend ratio of the aggregate stock market. We conjecture

𝑝𝑑𝑡 = ln (𝑃𝑡/𝐷𝑡) = 𝐴 + 𝐵𝑇𝑋𝑡 , (A.6)

and proceed to solve 𝐴 and 𝐵. Following Campbell and Shiller (1988), we log-linearize the stock
market return

𝑟𝑚𝑘𝑡𝑡+1 =𝜅0 + 𝜅1𝑝𝑑𝑡+1 − 𝑝𝑑𝑡 + Δ𝑑𝑡+1

=𝜅0 − (1 − 𝜅1) 𝐴 − 𝐵⊤ (I − 𝜅1Π) 𝑋𝑡 + 𝑔𝑡 + (𝜅1𝜎𝑋𝐵 + 𝜎𝐷)⊤ 𝜖𝑡+1 (A.7)

Under the no-arbitrage condition, we have

1 = E𝑡
[
𝑀𝑡+1 exp(𝑟𝑚𝑘𝑡𝑡+1 )

]
. (A.8)

We follow the same method of matching undetermined coefficients in the analysis of dividend strip
valuation ratios and solve

𝐴 =
1

1 − 𝜅1

[
𝑔 − 𝑟 + 𝜅0 − (𝜅1𝜎𝑋𝐵 + 𝜎𝐷)⊤ Σ𝜆 + 1

2
(𝜅1𝜎𝑋𝐵)⊤ Σ (𝜅1𝜎𝑋𝐵) + (𝜅1𝜎𝑋𝐵)⊤ Σ𝜎𝐷

]
(A.9)

𝐵 =
(
I − 𝜅1Π

⊤ − 𝜅1𝜃Σ𝜎𝑋
)−1 (𝜙 − 𝜃Σ𝜎𝐷 − 𝛾) . (A.10)

I.2 Valuation ratios from the cross section
Consider an individual stock 𝑖. The dividend dynamics of firm 𝑖 depend not only on the aggregate
state variables, 𝑋𝑡 , but also on the firm 𝑖-specific state variables, 𝑍𝑖,𝑡 , that is 𝐾𝑖-dimensional and
independent from 𝑋𝑡 . Without loss of generality, we assume that 𝑍𝑖,𝑡 evolves as a first-order vector
autoregression

𝑍𝑖,𝑡+1 = Ω𝑍𝑖,𝑡 + 𝜎⊤
𝑖,𝑍𝜐𝑖,𝑡+1, (A.11)

where 𝜐𝑖,𝑡+1 is a 𝑁𝑖-by-1 vector of 𝑖-specific news that has a normal distribution 𝑁 (0, Σ𝑖) and
is independent over time and independent from the aggregate shocks 𝜖𝑡+1. We use subscript 𝑖 to
differentiate firm 𝑖 from the aggregate variables (without subscript 𝑖) and other firms (with subscript
𝑗 ≠ 𝑖).

The dividend growth rate of firm 𝑖 loads on the aggregate and idiosyncratic shocks

ln
(
𝐷𝑖,𝑡+1

𝐷𝑖,𝑡

)
= 𝑔𝑖,𝑡 + 𝜎⊤

𝑖,𝐷𝜖𝑡+1 + 𝜎⊤
𝑖,𝜐𝜐𝑖,𝑡+1, (A.12)

where the expected dividend growth rate is given by

𝑔𝑖,𝑡 = 𝜙
⊤
𝑖 𝑋𝑡 + 𝛿⊤𝑖 𝑍𝑖,𝑡 + 𝑔𝑖 −

1
2
𝜎⊤
𝑖,𝐷Σ𝜎𝑖,𝐷 − 1

2
𝜎⊤
𝑖,𝜐Σ𝑖𝜎𝑖,𝜐, (A.13)

which loads on the aggregate state variables, 𝑋𝑡 , and firm 𝑖-specific state variables, 𝑍𝑖,𝑡 .
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The ratio of firm 𝑖’s dividend strip price, 𝑃𝑛
𝑖,𝑡

, to firm 𝑖’s current dividend is

𝑃𝑛
𝑖,𝑡

𝐷𝑖,𝑡
= exp

{
𝐴𝑖 (𝑛) + 𝐵𝑖 (𝑛)⊤ 𝑋𝑡 + 𝐶𝑖 (𝑛)⊤ 𝑍𝑖,𝑡

}
, (A.14)

where 𝐴𝑖 (𝑛), 𝐵𝑖 (𝑛), and 𝐶𝑖 (𝑛) are firm 𝑖-specific, deterministic functions of 𝑛 given by the
recursive equations

𝐵𝑖 (𝑛) =
(
Π⊤ − 𝜃Σ𝜎𝑋

)
𝐵𝑖 (𝑛 − 1) + 𝜙𝑖 − 𝛾 − 𝜃Σ𝜎𝑖,𝐷 . (A.15)

𝐶𝑖 (𝑛) =Ω⊤𝐶𝑖 (𝑛 − 1) + 𝛿𝑖 (A.16)

𝐴𝑖 (𝑛) =𝐴𝑖 (𝑛 − 1) + 𝑔𝑖 − 𝑟 −
(
𝜎𝑖,𝐷 + 𝜎𝑋𝐵𝑖 (𝑛 − 1)

)⊤
Σ𝜆 + 1

2
(
𝜎𝑖,𝐷 + 𝜎𝑋𝐵𝑖 (𝑛 − 1)

)⊤
Σ(

𝜎𝑖,𝐷 + 𝜎𝑋𝐵𝑖 (𝑛 − 1)
)
+ 1

2
(
𝜎𝑖,𝜈 + 𝜎𝑖,𝑍𝐶𝑖 (𝑛 − 1)

)⊤
Σ𝑖

(
𝜎𝑖,𝜈 + 𝜎𝑖,𝑍𝐶𝑖 (𝑛 − 1)

)
. (A.17)

with the initial conditions

𝐴𝑖 (0) = 0, 𝐵𝑖 (0) = 0, and 𝐶𝑖 (0) = 0. (A.18)

The price of firm 𝑖’s stock, 𝑃𝑖,𝑡 , is the sum of all its dividend strips

𝑃𝑖,𝑡

𝐷𝑖,𝑡
=

+∞∑︁
𝑛=1

𝑃𝑛
𝑖,𝑡

𝐷𝑖,𝑡
=

+∞∑︁
𝑛=1

exp
{
𝐴𝑖 (𝑛) + 𝐵𝑖 (𝑛)⊤ 𝑋𝑡 + 𝐶𝑖 (𝑛)⊤ 𝑍𝑖,𝑡

}
. (A.19)

In Appendix I, we use the log-linearization method of Campbell and Shiller (1988) to solve an
approximate exponential-affine form, so the log price-dividend ratio of stock 𝑖 is

ln
(
𝑃𝑖,𝑡

𝐷𝑖,𝑡

)
≈ 𝐴𝑖 + 𝐵⊤

𝑖 𝑋𝑡 + 𝐶⊤
𝑖 𝑍𝑖,𝑡 . (A.20)

Because 𝑍𝑖,𝑡 is independent from 𝑋𝑡 , recovering the state space 𝑋𝑡 using individual stocks’ price-
dividend ratio brings in noise. In a forecasting context, Kelly and Pruitt (2013) deal with this issue
using partial least squares, which is a method to compress the cross-section of valuation ratios into
signals (about the state variables) that are most relevant for the forecasting targets.

I.3 Solving the two-dimensional state space model
We conjecture that the market price-dividend ratio is exponential-affine in the state variables, so
the log ratio is

𝑝𝑑𝑡 = ln (𝑆𝑡/𝐷𝑡) = 𝐴 + 𝐵𝑦𝑡 + 𝐶𝑧𝑡 .
Next, we use the log-linearization of Campbell and Shiller (1988), i.e.,

𝑟𝑡+1 = 𝜅0 + 𝜅1𝑝𝑑𝑡+1 − 𝑝𝑑𝑡 + Δ𝑑𝑡+1,
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and substitute this log market return into the no-arbitrage condition

E𝑡 [𝑀𝑡+1 exp{𝑟𝑡+1}] = 1.

to obtain

E𝑡

[
exp

{
−𝑟 𝑓 −

1
2
𝜆2
𝑡 (𝜎⊤

𝜆 Σ𝜎𝜆)2 − 𝜆𝑡𝜎⊤
𝜆 𝜖𝑡+1 + 𝜅0 + 𝜅1𝑝𝑑𝑡+1 − 𝑝𝑑𝑡 + Δ𝑑𝑡+1

}]
= 1 (A.21)

Using the conjecture of 𝑝𝑑𝑡 and 𝑝𝑑𝑡+1 and the specification of 𝑔𝑡 and Δ𝑑𝑡+1, we obtain

E𝑡

[
exp

{
1
1
− 𝑟 𝑓 −

1
2
𝜆2
𝑡 (𝜎⊤

𝜆 Σ𝜎𝜆)2 − 𝜆𝑡𝜎⊤
𝜆 𝜖𝑡+1 + 𝜅0 − 𝐴 − 𝐵𝑦𝑡 − 𝐶𝑧𝑡 + 𝑧𝑡 + 𝑔 −

1
2
𝜎⊤
𝐷Σ𝜎𝐷 + 𝜎⊤

𝐷𝜖𝑡+1

+𝜅1𝐴 + 𝜅1𝐵(𝜌𝑦𝑦𝑡 + 𝜎⊤
𝑦 𝜖𝑡+1) + 𝜅1𝐶 (𝜌𝑧𝑧𝑡 + 𝜎⊤

𝑧 𝜖𝑡+1)
1
1

}]
= 1 (A.22)

For the conjecture of 𝑝𝑑𝑡 functional form to hold, the coefficient on 𝑧𝑡 is zero, so we obtain

𝐶 =
1

1 − 𝜅1𝜌𝑧
(A.23)

Collecting all terms with shocks at 𝑡 + 1 and using the moment-generating function, we obtain

E𝑡
[
exp

{
−𝜆𝑡𝜎⊤

𝜆 𝜖𝑡+1 + 𝜎⊤
𝐷𝜖𝑡+1 + 𝜅1𝐵𝜎

⊤
𝑦 𝜖𝑡+1 + 𝜅1𝐶𝜎

⊤
𝑧 𝜖𝑡+1

}]
= exp

{
1
2
𝜆2
𝑡 (𝜎⊤

𝜆 Σ𝜎𝜆)2 (A.24)

−(𝜎𝐷 + 𝜅1𝐵𝜎𝑦 + 𝜅1𝐶𝜎𝑧)⊤Σ𝜎𝜆𝜆𝑡 +
1
2
(𝜎𝐷 + 𝜅1𝐵𝜎𝑦 + 𝜅1𝐶𝜎𝑧)⊤Σ(𝜎𝐷 + 𝜅1𝐵𝜎𝑦 + 𝜅1𝐶𝜎𝑧)

}
Substituting this expression into the no-arbitrage condition, we obtain

exp
{
−𝑟 𝑓 + 𝜅0 − 𝐴 − 𝐵𝑦𝑡 − 𝐶𝑧𝑡 + 𝑧𝑡 + 𝑔 −

1
2
𝜎⊤
𝐷Σ𝜎𝐷 − (𝜎𝐷 + 𝜅1𝐵𝜎𝑦 + 𝜅1𝐶𝜎𝑧)⊤Σ𝜎𝜆 (𝜆 + 𝑦𝑡)

+𝜅1𝐴 + 𝜅1𝐵𝜌𝑦𝑦𝑡 + 𝜅1𝐶𝜌𝑧𝑧𝑡 +
1
2
(𝜎𝐷 + 𝜅1𝐵𝜎𝑦 + 𝜅1𝐶𝜎𝑧)⊤Σ(𝜎𝐷 + 𝜅1𝐵𝜎𝑦 + 𝜅1𝐶𝜎𝑧)

}
= 1 (A.25)

For the conjecture of 𝑝𝑑𝑡 functional form to hold, the coefficient on 𝑦𝑡 is zero, so we obtain

𝐵 = − (𝜎𝐷 + 𝜅1𝐶𝜎𝑧)⊤Σ𝜎𝜆
1 + 𝜅1𝜎

⊤
𝑦 Σ𝜎𝜆 − 𝜅1𝜌𝑦

(A.26)

Finally, all the constant terms should add up to zero, so we obtain

𝐴 =
𝑔 − 𝑟 𝑓 + 𝜅0 − 1

2𝜎
⊤
𝐷
Σ𝜎𝐷 + 1

2 (𝜎𝐷 + 𝜅1𝐵𝜎𝑦 + 𝜅1𝐶𝜎𝑧)⊤Σ(𝜎𝐷 + 𝜅1𝐵𝜎𝑦 + 𝜅1𝐶𝜎𝑧 − 2𝜎𝜆𝜆)
1 − 𝜅1

(A.27)
In the main text, to clarify the notations, we use 𝐴𝑝𝑑 , 𝐵𝑝𝑑 , and 𝐶𝑝𝑑 to denote 𝐴, 𝐵, and 𝐶 above,
respectively.
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Next, we solve the time-𝑡 log price-dividend ratio of the dividend strip that matures at 𝑡 + 1.
The no-arbitrage condition dictates

E𝑡

[
𝑀𝑡+1

𝐷𝑡+1

𝑃1
𝑡

]
= 1, (A.28)

or equivalently

E𝑡

[
𝑀𝑡+1

𝐷𝑡+1
𝐷𝑡

𝐷𝑡

𝑃1
𝑡

]
= E𝑡

[
𝑀𝑡+1 exp

{
𝑔𝑡 + 𝜎⊤

𝐷𝜖𝑡+1 − 𝑠1𝑡
}]

= 1, (A.29)

so we obtain

E𝑡

[
exp

{
−𝑟 𝑓 −

1
2
𝜆2
𝑡 (𝜎⊤

𝜆 Σ𝜎𝜆)2 − 𝜆𝑡𝜎⊤
𝜆 𝜖𝑡+1 + 𝑔𝑡 + 𝜎⊤

𝐷𝜖𝑡+1 − 𝑠1𝑡
}]

= 1. (A.30)

We conjecture
𝑠1𝑡 = 𝐴1 + 𝐵1𝑦𝑡 + 𝐶1𝑧𝑡 .

Substituting this conjecture, the specification of 𝑔𝑡 , and the specification of 𝜆𝑡 into the no-arbitrage
condition, we obtain

E𝑡

[
exp

{
−𝑟 𝑓 −

1
2
(𝜆 + 𝑦𝑡)2(𝜎⊤

𝜆 Σ𝜎𝜆)2 − (𝜆 + 𝑦𝑡)𝜎⊤
𝜆 𝜖𝑡+1

+𝑧𝑡 + 𝑔 −
1
2
𝜎⊤
𝐷Σ𝜎𝐷 + 𝜎⊤

𝐷𝜖𝑡+1 − 𝐴1 − 𝐵1𝑦𝑡 − 𝐶1𝑧𝑡

}]
= 1.

Using the moment-generating function to simplify the expression, we obtain

exp
{
−𝑟 𝑓 + 𝑧𝑡 + 𝑔 − 𝐴1 − 𝐵1𝑦𝑡 − 𝐶1𝑧𝑡 − 𝜎⊤

𝜆 Σ𝜎𝐷 (𝜆 + 𝑦𝑡)
}
= 1. (A.31)

For the conjecture of 𝑠1𝑡 functional form to hold, the coefficient of 𝑧𝑡 and the coefficient of 𝑦𝑡 must
be zero, so we obtain

𝐶1 = 1, (A.32)

and
𝐵1 = −𝜎⊤

𝜆 Σ𝜎𝐷 . (A.33)

Finally, the constant terms add up to zero, so we obtain

𝐴1 = 𝑔 − 𝑟 𝑓 − 𝜎⊤
𝜆 Σ𝜎𝐷𝜆 (A.34)

Finally, we solve the conditional expected market return. First, we start with E𝑡 [𝑟𝑡+1] =

𝜅0 + 𝜅1E𝑡 [𝑝𝑑𝑡+1] − 𝑝𝑑𝑡 + 𝑔𝑡 . Using the expression of 𝑝𝑑𝑡+1, 𝑝𝑑𝑡 , and 𝑔𝑡 , and the specifications of
law of motion of 𝑧𝑡 and 𝑦𝑡 , we obtain

E𝑡 [𝑟𝑡+1] =𝜅0 − (1 − 𝜅1)𝐴 + 𝑔 − 1
2
𝜎⊤
𝐷Σ𝜎𝐷 − (1 − 𝜅1𝜌𝑦)𝐵𝑦𝑡 . (A.35)
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We collect the constant terms into 𝐴𝑒𝑟 and define the coefficient of 𝑦𝑡 to be 𝐵𝑒𝑟 .

I.4 Proof of Proposition 3 on 𝜌𝑧 and return forecasting errors
Proof. We know that the expected return is a function of the price of risk 𝑦𝑡 :

E𝑡 [𝑟𝑡+1] = 𝐴𝑒𝑟 + 𝐵𝑒𝑟 𝑦𝑡 ,

and that
𝑑𝑟𝑡 = 𝐴𝑝𝑑 − 𝐴1 + (𝐵𝑝𝑑 − 𝐵1)𝑦𝑡 + (𝐶𝑝𝑑 − 𝐶1)𝑧𝑡 .

Combining the two equations, we have

E𝑡 [𝑟𝑡+1] = 𝐴𝑒𝑟 +
𝐵𝑒𝑟

𝐵1 − 𝐵𝑝𝑑
[
𝑑𝑟𝑡 − 𝐴𝑝𝑑 + 𝐴1 − (𝐶𝑝𝑑 − 𝐶1)𝑧𝑡

]
(A.36)

= const. + 𝐵𝑒𝑟

𝐵1 − 𝐵𝑝𝑑
[
𝑑𝑟𝑡 − (𝐶𝑝𝑑 − 𝐶1)𝑧𝑡

]
(A.37)

If 𝜌𝑧 = 0, E𝑡 [𝑟𝑡+1] = const. + 𝐵𝑒𝑟
𝐵1−𝐵𝑝𝑑 𝑑𝑟𝑡 . The forecast error is a white noise independent of

time-𝑡 variables:
𝜈𝑡+1 = 𝑟𝑡+1 − E𝑡 [𝑟𝑡+1] = 𝜖𝑡+1.

However, if 𝜌𝑧 ≠ 0 but the investor still uses equation (A.37) to forecast 𝑡 + 1 return, the forecast
error is then

𝜈𝑡+1 = 𝑟𝑡+1 −
[
const. + 𝐵𝑒𝑟

𝐵1 − 𝐵𝑝𝑑
𝑑𝑟𝑡

]
= 𝑟𝑡+1 −

[
E𝑡 [𝑟𝑡+1] +

𝐵𝑒𝑟 (𝐶𝑝𝑑 − 𝐶1)
𝐵1 − 𝐵𝑝𝑑

𝑧𝑡

]
= 𝜖𝑡+1 −

𝐵𝑒𝑟 (𝐶𝑝𝑑 − 𝐶1)
𝐵1 − 𝐵𝑝𝑑

𝑧𝑡 = 𝜖𝑡+1 −
𝐵𝑒𝑟

𝐵1 − 𝐵𝑝𝑑

(
1

1 − 𝜅1𝜌𝑧
− 1

)
𝑧𝑡 .

The correlation between 𝜌̂𝑧,𝑡 and 𝜈𝑡+1 is therefore

𝐶𝑜𝑟𝑟 (𝜌𝑧,𝑡 , 𝜈𝑡+1) = − 𝐵𝑒𝑟

𝐵1 − 𝐵𝑝𝑑
𝐶𝑜𝑟𝑟

(
𝜌𝑧,𝑡 ,

(
1

1 − 𝜅1𝜌𝑧,𝑡
− 1

)
𝑧𝑡

)
Based on our findings on return predictability, 𝑑𝑟𝑡 negatively predicts future returns. Therefore, the
coefficient of 𝑑𝑟𝑡 in equation (A.37), 𝐵𝑒𝑟

𝐵1−𝐵𝑝𝑑 , is negative. Under this condition, we obtain

sgn
(
𝐶𝑜𝑟𝑟 (𝜌𝑧,𝑡 , 𝜈𝑡+1)

)
= sgn

(
𝐶𝑜𝑣

(
𝜌𝑧,𝑡 ,

(
1

1 − 𝜅1𝜌𝑧,𝑡
− 1

)
𝑧𝑡

))
= sgn

(
E

(
𝜅1𝜌

2
𝑧,𝑡𝑧𝑡

1 − 𝜅1𝜌𝑧,𝑡

)
− E

(
𝜌𝑧,𝑡

)
E

(
𝜅1𝜌𝑧,𝑡𝑧𝑡

1 − 𝜅1𝜌𝑧,𝑡

))
As demonstrated by the rolling estimation results in Table 7, 𝜌𝑧,𝑡 on average is close to zero (see
also Table 7, we have E

(
𝜌̂𝑧,𝑡

)
≈ 0. Using 1-year earnings growth forecasts from IBES Global

Aggregate (IGA) as a proxy for 𝑧𝑡 and 𝜅1 = 0.98, we calculate the estimate of E
(
𝜅1 𝜌̂

2
𝑧,𝑡 𝑧𝑡

1−𝜅1 𝜌̂𝑧,𝑡

)
in our
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sample to be 0.005626 with 𝑝-value < 0.01, which implies

sgn
(
𝐶𝑜𝑟𝑟 (𝜌𝑧,𝑡 , 𝜈𝑡+1)

)
= sgn

(
E

(
𝜅1𝜌

2
𝑧,𝑡𝑧𝑡

1 − 𝜅1𝜌𝑧,𝑡

))
> 0.

I.5 Deriving the Sharpe ratio of market-timing strategy
Following Campbell and Thompson (2008), we assume that the excess return can be decomposed
as follows:

𝑟𝑡+1 = 𝜇 + 𝑥𝑡 + 𝜀𝑡+1

where 𝜇 is the unconditional mean. The predictor 𝑥𝑡 has mean 0 and variance 𝜎2
𝑥 , independent

from the error term 𝜀𝑡+1. For simplicity, we assume that the mean-variance investor has a relative
risk aversion coefficient 𝛾 = 1. When using 𝑥𝑡 to time the market, the investor allocates

𝛼𝑡 =
𝜇 + 𝑥𝑡
𝜎2
𝜀

to the risky asset and on average earns an excess return of

E (𝛼𝑡𝑟𝑡+1) = E
(
(𝜇 + 𝑥𝑡) (𝜇 + 𝑥𝑡 + 𝜀𝑡+1)

𝜎2
𝜀

)
=
𝜇2 + 𝜎2

𝑥

𝜎2
𝜀

The variance of the market-timing strategy is

Var (𝛼𝑡𝑟𝑡+1) = Var
[
(𝜇 + 𝑥𝑡) (𝜇 + 𝑥𝑡 + 𝜀𝑡+1)

𝜎2
𝜀

]
The (squared) market-timing Sharpe ratio 𝑠21 can be written as

𝑠21 =
[E (𝛼𝑡𝑟𝑡+1)]2

Var (𝛼𝑡𝑟𝑡+1)
= 𝐴 ·

𝜇2 + 𝜎2
𝑥

𝜎2
𝜀

where 𝐴 is a constant that depends on 𝑉𝑎𝑟 [(𝜇 + 𝑥𝑡) (𝜇 + 𝑥𝑡 + 𝜀𝑡+1)] and (𝜇2 + 𝜎2
𝑥 )/𝜎2

𝜀 .
Given the buy-and-hold Sharpe ratio 𝑠0,

𝑠20 =
𝜇2

𝜎2
𝑥 + 𝜎2

𝜀

and the predictive regression 𝑅2,

𝑅2 =
𝜎2
𝑥

𝜎2
𝑥 + 𝜎2

𝜀

,
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we obtain the relationship between the buy-and-hold and market-timing Sharpe ratios as

𝑠21 = 𝐴 ·
𝜇2 + 𝜎2

𝑥

𝜎2
𝜀

= 𝐴 ·
𝜇2 + 𝜎2

𝑥(
𝜎2
𝑥 + 𝜎2

𝜀

) (
1 − 𝑅2) = 𝐴 ·

𝑠20 + 𝑅
2

1 − 𝑅2

When the predictor has no predictive power, we know that 𝑅2 = 0 and 𝑠0 = 𝑠1. We therefore pin
down the constant 𝐴 = 1 and obtain

𝑠1 =

√︄
𝑠20 + 𝑅2

1 − 𝑅2 . (A.38)

Using data back to 1871, Campbell and Thompson (2008) obtain a long-term estimate of the
market buy-and-hold Sharpe ratio (“𝑠0”) of 0.37 (annualized). If a mean-variance investor uses
the information from 𝑑𝑟 to construct a market-timing strategy, with an out-of-sample 𝑅2 of 14.6%,
she would obtain a Sharpe ratio (“𝑠1”) of 0.58, representing a 54.7% improvement over the Sharpe
ratio achieved by the buy-and-hold approach.
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Appendix II: Filtering the Persistence of Expected Growth

Table A.1 Estimating the Persistence of Expected Cash-Flow Growth (State Space Model)
This table presents the estimation results for four models of dividend growth rates: (1) the unrestricted state-space
model as specified in equations (18) and (19) in Section 2; (2) the restricted state-space model with the constraint
𝜌𝑧 = 0; (3) the MA(1) model (Δ𝑑𝑡+1 = 𝑔 + 𝜎𝐷𝜀𝑡+1 + 𝜒𝜎𝐷𝜀𝑡 ); and (4) the AR(1) model (Δ𝑑𝑡+1 = 𝑔 + 𝛾Δ𝑑𝑡 + 𝜎𝐷𝜀𝑡+1).
Panel A reports results using the annual (non-overlapping) dividend growth of the S&P 500 index, while Panel B
reports results using the annual (non-overlapping) dividend growth of the Fama-French market portfolio. For each
model, the log-likelihood (“LogL”), AIC, and BIC are provided. 𝑡-statistics are presented in squared brackets.

𝜌̂𝑧 𝑔̂ 𝜎̂𝑑 𝜎̂𝑧 𝜒̂ 𝛾̂ LogL AIC BIC

Panel A: S&P 500

Unrestricted 0.26 0.06 0.00 0.11 74.44 -140.88 -128.97
[0.94] [3.01] [0.00] [1.70]

Restricted 0.06 0.08 0.08 71.36 -136.72 -127.79
[4.68] [0.00] [0.00]

MA(1) 0.06 0.10 0.41 76.41 -146.82 -137.89
[3.38] [13.45] [6.11]

AR(1) 0.04 0.11 0.26 74.50 -142.99 -134.06
[3.64] [14.90] [3.51]

Panel B: MKT

Unrestricted -0.08 0.06 0.00 0.15 43.96 -79.92 -69.8
[-0.06] [3.86] [0.00] [0.12]

Restricted 0.06 0.11 0.11 43.67 -81.34 -73.8
[3.62] [0.10] [0.10]

MA(1) 0.06 0.15 -0.09 44.00 -82.00 -74.4
[3.94] [6.99] [-1.02]

AR(1) 0.06 0.15 -0.08 43.96 -81.93 -74.39
[3.89] [6.98] [-0.87]

An alternative method to estimate 𝜌𝑧 is to directly estimate the state-space model given by
equations (18) and (19) with the realized dividend data. Using the standard Kalman filter, we obtain
estimates of 𝜌𝑧. For comparison, we report results for both the S&P 500 index and the Fama-French
market portfolio (“MKT”).46 Since the model is set up at annual frequency, we use annual (non-
overlapping) dividend growth data. The sample spans 1926 to 2019.47 The results are reported in
Table A.1, where Panel A and B are for S&P 500 and MKT, respectively. In the row “Unrestricted”
of Panel A and B of Table A.1, the estimates of 𝜌̂𝑧 are statistically indistinguishable from zero.48
The restricted model with 𝜌𝑧 = 0 generates similar likelihood and information criteria, indicating
that allowing 𝜌𝑧 to be a free parameter does not significantly improve the model fitness. We also

46We obtain dividend data for the Fama-French market portfolio (the CRSP NYSE/NYSEMKT/Nasdaq Value-
Weighted Market Index.)

47We also used the longest available S&P 500 dividend series starting from 1872 and obtained similar results. The
results are available upon request.

48The Kalman filter assumes that the shocks to realized and expected dividend growth are uncorrelated. In the
appendix, we demonstrate the robustness of our estimate of 𝜌𝑧 by considering different values of the correlation, from
-0.9 to 0.9, while fixing the volatility of realized-dividend shock at the estimate in Panel A. The estimated 𝜌𝑧 barely
moves with the value of shock correlations in [−0.9, 0.9] as shown in Figure A.1.
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Figure A.1 𝜌𝑧 Estimates from the State-Space Model with Correlated Shocks
This figure presents the estimated values of the expected dividend growth autoregressive coefficient (𝜌𝑧) in unrestricted
state-space models, as discussed in Section 2, with varying correlations between the Δ𝑑 and 𝑧 shocks. The correlations
range from -0.9 to 0.9, and the volatility of the Δ𝑑 shock is adjusted to match the estimated 𝜎̂𝐷 from the state-space
model with uncorrelated shocks. Panel A uses the annual (non-overlapping) dividend growth of the S&P 500 index,
and Panel B uses the annual (non-overlapping) dividend growth of the Fama-French market portfolio.

estimate MA(1) and AR(1) models for comparison and find that the estimates of the autoregressive
coefficient, i.e., 𝜒 and 𝛾 for MA(1) and AR(1), respectively, are statistically indistinguishable from
zero. In sum, the state-space approach delivers a similar message as the estimation based on analyst
forecasts: The persistence of growth expectation is close to zero.
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Appendix III: Additional Tables and Figures

Table A.2 Predicting Dividend Growth Using Different Combinations of Valuation Ratios
This table reports regression results for predicting one-year S&P 500 Index dividend growth using various predictors
and sets of valuation ratios. 𝑡-statistics based on Newey-West standard errors with autocorrelation of up to 18 lags are
reported in parentheses. Data sample: 1988:01–2019:12. See Figure 3 for a detailed definition of each variable.

Δ𝑑𝑡+1

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16)

𝑑𝑟𝑡 -0.18∗∗∗ -0.04∗∗
(0.05) (0.02)

𝑝𝑑𝑡 0.29∗∗∗ 0.02 0.07 0.10∗ 7.93∗∗ 0.10∗ 4.24 2.26 2.15
(0.11) (0.05) (0.06) (0.06) (3.65) (0.06) (3.34) (2.86) (2.90)

𝑔𝐹𝑡 0.68∗∗∗
(0.25)

𝐾𝑃𝐶𝐹𝑡 0.22
(0.14)

𝑠0.5𝑡 0.03 0.14∗∗∗ 0.14∗∗∗ 0.02 0.02 0.10∗∗ 0.01
(0.03) (0.05) (0.05) (0.03) (0.03) (0.04) (0.03)

𝑠1𝑡 0.10∗∗∗ 0.18∗∗∗ 0.18∗∗∗ 0.16∗∗∗ 0.16∗∗∗ 0.15∗∗∗ 0.15∗∗∗
(0.03) (0.06) (0.05) (0.06) (0.06) (0.04) (0.04)

𝑠1+𝑡 0.07 0.10∗ -7.69∗∗ 0.10∗ -4.07 -2.11 -2.00
(0.05) (0.06) (3.53) (0.05) (3.23) (2.76) (2.80)

𝑁 372 372 372 372 372 372 372 372 372 372 372 372 372 372 372 372
𝑅2 0.395 0.062 0.004 0.324 0.040 0.255 0.270 0.383 0.271 0.384 0.231 0.385 0.386 0.310 0.394 0.394
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Table A.3 Predicting Returns Using Different Combinations of Valuation Ratios
This table reports regression results for predicting one-year S&P 500 Index returns using various predictors and sets
of valuation ratios. 𝑡-statistics based on Newey-West standard errors with autocorrelation of up to 18 lags are reported
in parentheses. Data sample: 1988:01–2019:12. See Figure 4 for a detailed definition of each variable.

𝑟𝑡+1

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15)

𝑑𝑟𝑡 -0.16∗∗∗
(0.03)

𝑝𝑑𝑡 -0.20∗∗∗ -0.13∗∗ -0.09 7.54 -0.09 1.18 -1.41 -1.87
(0.07) (0.06) (0.07) (4.58) (0.07) (4.38) (4.03) (3.70)

𝜇𝐹𝑡 2.58∗∗∗
(0.92)

𝐾𝑃𝑡 0.90∗∗∗
(0.31)

𝑠0.5𝑡 0.03 0.18∗∗∗ 0.18∗∗∗ 0.03 0.03 0.17∗∗ 0.04
(0.09) (0.06) (0.06) (0.09) (0.09) (0.07) (0.09)

𝑠1𝑡 0.25∗∗∗ 0.23∗∗∗ 0.23∗∗∗ 0.20∗∗ 0.20∗∗ 0.24∗∗∗ 0.21∗∗
(0.09) (0.06) (0.06) (0.10) (0.10) (0.06) (0.11)

𝑠1+𝑡 -0.13∗∗ -0.09 -7.53∗ -0.09 -1.28 1.29 1.74
(0.06) (0.07) (4.46) (0.07) (4.25) (3.92) (3.59)

𝑁 372 372 372 372 372 372 372 372 372 372 372 372 372 372 372
𝑅2 0.248 0.138 0.156 0.149 0.245 0.230 0.265 0.230 0.265 0.183 0.266 0.266 0.231 0.266 0.268
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Table A.4 Forecasting Macroeconomic Variables with 𝑑𝑟 and Valuation Ratios
This table presents the 𝑅2 values for predicting one-year-ahead macroeconomic variables using predictors (𝑑𝑟 , 𝑝𝑑,
and 𝑠1) that contain information about the underlying state variables. The macroeconomic variables are categorized
as follows: 1) Macroeconomic: nominal GDP Growth, Industrial Production Growth (“IP Growth”), Chicago Fed
National Activity Index (“CFNAI"), Unemployment Rate, Real Consumption Growth, Total Business Inventories,
Nonresidential Fixed Investment (nominal), Residential Fixed Investment (nominal), and GDP Deflator are all from
FRED database. 2) Financial: Term Spread and Default Spread (“Baa-Aaa") are from FRED; Gilchrist-Zakrajšek credit
spread (GZ Credit Spread) is from Gilchrist and Zakrajs̆ek (2012); CAPE is the cyclically adjusted price-earnings ratio
from Robert Shiller’s website; cay is from Lettau and Ludvigson (2001). 3) Intermediary: Broker/Dealer leverage (“B/D
Leverage") is from Adrian, Etula, and Muir (2014); Broker/Dealer 1(5) year average CDS spreads (“B/D 1(5) Year Avg.
CDS") is from Gilchrist and Zakrajs̆ek (2012); ROA of banks (“ROA Banks") is from FRED. 4) Uncertainties: CBOE
1-month VIX index (“VIX") and Chauvet and Piger (2008)’s smoothed U.S. recession probabilities estimates for given
month (“CP Recession") are from FRED; Economics policy uncertainties (“EPU") is from Baker, Bloom, and Davis
(2016); Survey of Professional Forecasters recession probability estimates (“SPF Recession") is from the Philadelphia
Fed. 5) Sentiments: Sentiment Index (both raw and orthogonalized against several macro variables), Number of IPOs
(“IPO #"), and close-end fund NAV discount (“Close-end Discount") are all from Baker and Wurgler (2006).

𝑑𝑟 + 𝑝𝑑 𝑑𝑟 𝑝𝑑 𝑑𝑟 + 𝑠1 𝑠1

Macroeconomic:
GDP Growth 0.222 0.061 0.000 0.224 0.178
IP Growth 0.202 0.062 0.001 0.203 0.167
Unemployment Growth 0.335 0.062 0.001 0.325 0.229
Real Consumption Growth 0.241 0.019 0.121 0.241 0.208
Business Inventories Growth 0.383 0.114 0.000 0.377 0.304
Nonres. Fixed Investment Growth 0.366 0.055 0.005 0.361 0.240
CPI Growth 0.311 0.227 0.311 0.302 0.071

Financial:
Baa-Aaa 0.081 0.044 0.008 0.081 0.078
GZ Credit Spread 0.321 0.318 0.218 0.321 0.259
Term Spread 0.122 0.001 0.039 0.120 0.023
CAPE 0.474 0.300 0.465 0.478 0.062
cay 0.072 0.042 0.069 0.071 0.008

Intermediary:
B/D Leverage 0.313 0.290 0.296 0.308 0.151
B/D 1 Year Avg. CDS 0.284 0.052 0.106 0.284 0.283
B/D 5 Year Avg. CDS 0.393 0.020 0.231 0.393 0.383
ROA Banks 0.403 0.080 0.275 0.388 0.002

Uncertainties:
VIX 0.145 0.134 0.068 0.144 0.131
EPU 0.049 0.002 0.005 0.047 0.022
CP Recession 0.063 0.030 0.004 0.063 0.059
SPF Recession 0.194 0.017 0.008 0.191 0.109

Sentiments:
Sentiment Index 0.131 0.131 0.099 0.131 0.094
Sentiment Index (orth.) 0.113 0.109 0.102 0.113 0.062
IPO # 0.144 0.142 0.093 0.144 0.120
Close-end Discount 0.123 0.109 0.119 0.118 0.054
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Table A.5 Kostakis, Magdalinos, and Stamatogiannis (2014) IVX-Wald Test
This table presents results of the IVX-Wald test proposed by Kostakis, Magdalinos, and Stamatogiannis (2014) on the
predictive coefficient 𝛽 in Table (2). IVX-Wald is the Wald statistic to test 𝐻0 : 𝛽 = 0 against 𝐻1 : 𝛽 ≠ 0. The test is
designed to be robust to the persistence of the predictor. 𝑝-value of the IVX-Wald test is provided in the parentheses.
*, **, and *** indicate significance at the 10%, 5%, and 1% levels, respectively.

𝑑𝑟𝑡 𝑝𝑑𝑡 𝜇𝐹𝑡 𝐾𝑃𝑡

IVX-Wald 9.29∗∗∗ 1.56 2.77∗ 5.74∗∗
𝑝-value (0.002) (0.212) (0.096) (0.017)
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Table A.6 Predicting Annual Excess Return
This table presents the results of the predictive regression specified in equation (17). The dependent variable is
the log excess return of the S&P 500 index over the next twelve months, 𝑟𝑒

𝑡+1. The predictors include: the ‘slope’
of the term structure of valuation ratios 𝑑𝑟𝑡 , the price-dividend ratio 𝑝𝑑𝑡 , the filtered series for expected returns
following Binsbergen and Koĳen (2010) 𝜇𝐹𝑡 , and the single predictive factor extracted from 100 book-to-market and
size portfolios as per Kelly and Pruitt (2013) 𝐾𝑃𝑡 . For each predictor, the table reports the raw 𝛽 estimate followed
by the Hodrick (1992) 𝑡-statistic, the Newey and West (1987) 𝑡-statistic (with 18 lags), and the 𝛽 coefficient adjusted
for Stambaugh (1999) bias. Starting from January 1998, we generate out-of-sample forecasts of the return for the
next twelve months by estimating the regression using data up to the current month. These forecasts are then used to
compute the out-of-sample 𝑅2, the ENC test (Clark and McCracken, 2001), and the 𝑝-value of the CW test (Clark and
West, 2007). Data sample: 1988:01–2019:12.

𝑟𝑒
𝑡+1

(1) (2) (3) (4) (5)

𝑑𝑟𝑡 -0.146 -0.228
Hodrick t [-3.178] [-2.945]
Newey-West t (-3.867) (-3.571)
Stambaugh bias adjusted 𝛽 -0.136

𝑝𝑑𝑡 -0.180 0.161
[-2.168] [1.820]
(-2.262) (1.286)
-0.170

𝜇𝐹𝑡 2.293
[2.033]
(2.205)
2.303

𝐾𝑃𝑡 0.827
[2.715]
(2.429)
0.837

𝑁 372 372 372 372 372
𝑅2 0.219 0.114 0.124 0.128 0.241
OOS 𝑅2 0.098 -0.040 -0.096 0.005 0.138
ENC 1.924 0.296 0.021 2.175 4.539
𝑝(𝐸𝑁𝐶) <0.10 >0.10 >0.10 <0.05 <0.05
𝑝(𝐶𝑊) 0.058 0.379 0.493 0.072 0.028
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Table A.7 Predicting Annual Return: Fama-French Market Return
This table presents the results of the predictive regression specified in equation (17). The dependent variable is the
log market return from Fama-French in the next twelve months, 𝑟𝑀𝐾𝑇

𝑡+1 . The predictors include: the ‘slope’ of the
term structure of valuation ratios 𝑑𝑟𝑡 , the price-dividend ratio 𝑝𝑑𝑡 , the filtered series for expected returns following
Binsbergen and Koĳen (2010) 𝜇𝐹𝑡 , and the single predictive factor extracted from 100 book-to-market and size portfolios
as per Kelly and Pruitt (2013) 𝐾𝑃𝑡 . For each predictor, the table reports the raw 𝛽 estimate followed by the Hodrick
(1992) 𝑡-statistic, the Newey and West (1987) 𝑡-statistic (with 18 lags), and the 𝛽 coefficient adjusted for Stambaugh
(1999) bias. Starting from January 1998, we generate out-of-sample forecasts of the return for the next twelve months
by estimating the regression using data up to the current month. These forecasts are then used to compute the out-of-
sample 𝑅2, the ENC test (Clark and McCracken, 2001), and the 𝑝-value of the CW test (Clark and West, 2007). Data
sample: 1988:01–2019:12.

𝑟𝑀𝐾𝑇
𝑡+1

(1) (2) (3) (4) (5)

𝑑𝑟𝑡 -0.154 -0.222
Hodrick t [-3.233] [-2.772]
Newey-West t (-4.464) (-3.511)
Stambaugh bias adjusted 𝛽 -0.144

𝑝𝑑𝑡 -0.198 0.133
[-2.302] [1.608]
(-2.706) (1.129)
-0.188

𝜇𝐹𝑡 2.486
[2.327]
(2.656)
2.496

𝐾𝑃𝑡 0.794
[2.223]
(2.689)
0.805

𝑁 372 372 372 372 372
𝑅2 0.236 0.134 0.141 0.128 0.251
OOS 𝑅2 0.144 0.022 -0.023 -0.001 0.181
ENC 3.083 0.963 0.598 2.483 6.163
𝑝(𝐸𝑁𝐶) <0.05 >0.10 >0.10 <0.05 <0.01
𝑝(𝐶𝑊) 0.017 0.166 0.321 0.048 0.019
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Table A.8 Predicting Annual Return: Fama-French Market Excess Return
This table presents the results of the predictive regression specified in equation (17). The dependent variable is the
log market excess return from Fama-French in the next twelve months, 𝑟𝑀𝐾𝑇,𝑒

𝑡+1 . The predictors include: the ‘slope’
of the term structure of valuation ratios 𝑑𝑟𝑡 , the price-dividend ratio 𝑝𝑑𝑡 , the filtered series for expected returns
following Binsbergen and Koĳen (2010) 𝜇𝐹𝑡 , and the single predictive factor extracted from 100 book-to-market and
size portfolios as per Kelly and Pruitt (2013) 𝐾𝑃𝑡 . For each predictor, the table reports the raw 𝛽 estimate followed
by the Hodrick (1992) 𝑡-statistic, the Newey and West (1987) 𝑡-statistic (with 18 lags), and the 𝛽 coefficient adjusted
for Stambaugh (1999) bias. Starting from January 1998, we generate out-of-sample forecasts of the return for the
next twelve months by estimating the regression using data up to the current month. These forecasts are then used to
compute the out-of-sample 𝑅2, the ENC test (Clark and McCracken, 2001), and the 𝑝-value of the CW test (Clark and
West, 2007). Data sample: 1988:01–2019:12.

𝑟
𝑀𝐾𝑇,𝑒

𝑡+1

(1) (2) (3) (4) (5)

𝑑𝑟𝑡 -0.144 -0.222
Hodrick t [-3.060] [-2.791]
Newey-West t (-3.745) (-3.503)
Stambaugh bias adjusted 𝛽 -0.134

𝑝𝑑𝑡 -0.179 0.153
[-2.108] [1.704]
(-2.199) (1.202)
-0.169

𝜇𝐹𝑡 2.192
[2.075]
(2.057)
2.203

𝐾𝑃𝑡 0.725
[2.044]
(2.251)
0.735

𝑁 372 372 372 372 372
𝑅2 0.206 0.108 0.109 0.105 0.225
OOS 𝑅2 0.099 -0.018 -0.081 -0.037 0.140
ENC 2.000 0.376 -0.047 1.700 4.656
𝑝(𝐸𝑁𝐶) <0.10 >0.10 >0.10 <0.10 <0.05
𝑝(𝐶𝑊) 0.047 0.349 0.485 0.120 0.027
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Table A.9 Monthly Return Prediction
This table presents the results of the predictive regression specified in equation (17). The dependent variable is the log
return of the S&P 500 index over the next months, 𝑟𝑡+1/12. The predictors include: the ‘slope’ of the term structure
of valuation ratios 𝑑𝑟𝑡 , the price-dividend ratio 𝑝𝑑𝑡 , the filtered series for expected returns following Binsbergen
and Koĳen (2010) 𝜇𝐹𝑡 , and the single predictive factor extracted from 100 book-to-market and size portfolios as per
Kelly and Pruitt (2013) 𝐾𝑃𝑡 . For each predictor, the table reports the raw 𝛽 estimate followed by the Hodrick (1992)
𝑡-statistic, the Newey and West (1987) 𝑡-statistic (with 7 lags), and the 𝛽 coefficient adjusted for Stambaugh (1999)
bias. Starting from January 1998, we generate out-of-sample forecasts of the return for the next month by estimating
the regression using data up to the current month. These forecasts are then used to compute the out-of-sample 𝑅2,
the ENC test (Clark and McCracken, 2001), and the 𝑝-value of the CW test (Clark and West, 2007). Data sample:
1988:01–2019:12.

𝑟𝑡+1/12

(1) (2) (3) (4) (5)

𝑑𝑟𝑡 -0.012 -0.017
Hodrick t [-2.529] [-1.427]
Newey-West t (-2.826) (-2.034)

𝑝𝑑𝑡 -0.015 0.011
[-1.891] [0.530]
(-2.090) (0.751)

𝜇𝐹𝑡 0.211
[2.224]
(2.401)

𝐾𝑃𝑡 0.019
[0.656]
(0.680)

𝑁 383 383 383 383 383
𝑅2 0.021 0.011 0.015 0.001 0.022
OOS 𝑅2 0.015 0.004 0.007 -0.012 0.005
ENC 2.678 1.122 1.673 -0.676 2.384
𝑝(𝐸𝑁𝐶) <0.05 >0.10 <0.10 >0.10 <0.10
𝑝(𝐶𝑊) 0.018 0.179 0.122 0.325 0.129
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Table A.10 Monthly Excess Return Prediction
This table presents the results of the predictive regression specified in equation (17). The dependent variable is the
log excess return of the S&P 500 index over the next months, 𝑟𝑒

𝑡+1/12. The predictors include: the ‘slope’ of the
term structure of valuation ratios 𝑑𝑟𝑡 , the price-dividend ratio 𝑝𝑑𝑡 , the filtered series for expected returns following
Binsbergen and Koĳen (2010) 𝜇𝐹𝑡 , and the single predictive factor extracted from 100 book-to-market and size portfolios
as per Kelly and Pruitt (2013) 𝐾𝑃𝑡 . For each predictor, the table reports the raw 𝛽 estimate followed by the Hodrick
(1992) 𝑡-statistic, the Newey and West (1987) 𝑡-statistic (with 7 lags), and the 𝛽 coefficient adjusted for Stambaugh
(1999) bias. Starting from January 1998, we generate out-of-sample forecasts of the return for the next month by
estimating the regression using data up to the current month. These forecasts are then used to compute the out-of-
sample 𝑅2, the ENC test (Clark and McCracken, 2001), and the 𝑝-value of the CW test (Clark and West, 2007). Data
sample: 1988:01–2019:12.

𝑟𝑒
𝑡+1/12

(1) (2) (3) (4) (5)

𝑑𝑟𝑡 -0.011 -0.018
Hodrick t [-2.394] [-1.504]
Newey-West t (-2.684) (-2.134)

𝑝𝑑𝑡 -0.014 0.014
[-1.687] [0.670]
(-1.873) (0.944)

𝜇𝐹𝑡 0.188
[1.967]
(2.137)

𝐾𝑃𝑡 0.015
[0.514]
(0.535)

𝑁 383 383 383 383 383
𝑅2 0.019 0.009 0.012 0.001 0.021
OOS 𝑅2 0.012 0.001 0.003 -0.013 0.003
ENC 2.338 0.670 1.060 -0.766 2.233
𝑝(𝐸𝑁𝐶) <0.05 >0.10 >0.10 >0.10 <0.10
𝑝(𝐶𝑊) 0.038 0.283 0.228 0.302 0.159
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Table A.11 Monthly Return Prediction: Fama-French MKT Return
This table presents the results of the predictive regression specified in equation (17). The dependent variable is the log
market return from Fama-French in the next month, 𝑟𝑀𝐾𝑇

𝑡+1/12. The predictors include: the ‘slope’ of the term structure
of valuation ratios 𝑑𝑟𝑡 , the price-dividend ratio 𝑝𝑑𝑡 , the filtered series for expected returns following Binsbergen
and Koĳen (2010) 𝜇𝐹𝑡 , and the single predictive factor extracted from 100 book-to-market and size portfolios as per
Kelly and Pruitt (2013) 𝐾𝑃𝑡 . For each predictor, the table reports the raw 𝛽 estimate followed by the Hodrick (1992)
𝑡-statistic, the Newey and West (1987) 𝑡-statistic (with 7 lags), and the 𝛽 coefficient adjusted for Stambaugh (1999)
bias. Starting from January 1998, we generate out-of-sample forecasts of the return for the next month by estimating
the regression using data up to the current month. These forecasts are then used to compute the out-of-sample 𝑅2,
the ENC test (Clark and McCracken, 2001), and the 𝑝-value of the CW test (Clark and West, 2007). Data sample:
1988:01–2019:12.

𝑟𝑀𝐾𝑇
𝑡+1/12

(1) (2) (3) (4) (5)
𝑑𝑟𝑡 -0.012 -0.017

Hodrick t [-2.354] [-1.330]
Newey-West t (-2.742) (-1.945)

𝑝𝑑𝑡 -0.015 0.011
[-1.819] [0.488]
(-2.044) (0.697)

𝜇𝐹𝑡 0.208
[2.091]
(2.306)

𝐾𝑃𝑡 0.018
[0.588]
(0.626)

𝑁 383 383 383 383 383
𝑅2 0.019 0.011 0.014 0.001 0.021
OOS 𝑅2 0.012 0.003 0.005 -0.014 0.003
ENC 2.227 0.876 1.275 -1.009 1.869
𝑝(𝐸𝑁𝐶) <0.05 >0.10 <0.10 >0.10 >0.10
𝑝(𝐶𝑊) 0.034 0.220 0.171 0.220 0.176
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Table A.12 Monthly Return Prediction: Fama-French MKT excess Return
This table presents the results of the predictive regression specified in equation (17). The dependent variable is the
log excess market return from Fama-French in the next month, 𝑟𝑀𝐾𝑇,𝑒

𝑡+1/12 . The predictors include: the ‘slope’ of the
term structure of valuation ratios 𝑑𝑟𝑡 , the price-dividend ratio 𝑝𝑑𝑡 , the filtered series for expected returns following
Binsbergen and Koĳen (2010) 𝜇𝐹𝑡 , and the single predictive factor extracted from 100 book-to-market and size portfolios
as per Kelly and Pruitt (2013) 𝐾𝑃𝑡 . For each predictor, the table reports the raw 𝛽 estimate followed by the Hodrick
(1992) 𝑡-statistic, the Newey and West (1987) 𝑡-statistic (with 7 lags), and the 𝛽 coefficient adjusted for Stambaugh
(1999) bias. Starting from January 1998, we generate out-of-sample forecasts of the return for the next month by
estimating the regression using data up to the current month. These forecasts are then used to compute the out-of-
sample 𝑅2, the ENC test (Clark and McCracken, 2001), and the 𝑝-value of the CW test (Clark and West, 2007). Data
sample: 1988:01–2019:12.

𝑟
𝑀𝐾𝑇,𝑒

𝑡+1/12

(1) (2) (3) (4) (5)

𝑑𝑟𝑡 -0.011 -0.018
Hodrick t [-2.228] [-1.402]
Newey-West t (-2.602) (-2.042)

𝑝𝑑𝑡 -0.014 0.013
[-1.621] [0.623]
(-1.830) (0.885)

𝜇𝐹𝑡 0.185
[1.844]
(2.049)

𝐾𝑃𝑡 0.014
[0.453]
(0.484)

𝑁 383 383 383 383 383
𝑅2 0.017 0.009 0.011 0.001 0.019
OOS 𝑅2 0.010 0.000 0.001 -0.014 0.001
ENC 1.903 0.443 0.699 -1.082 1.718
𝑝(𝐸𝑁𝐶) <0.10 >0.10 >0.10 >0.10 >0.10
𝑝(𝐶𝑊) 0.065 0.340 0.297 0.205 0.209
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Table A.13 Return Spanning Test: 𝑑𝑟
The table presents the results of the following return spanning test:

𝑟𝑡+1 = 𝛼 + 𝛽𝑑𝑟𝑡 + 𝛾𝑥𝑡 + 𝜖𝑡+1.

The dependent variable is the log return of the S&P 500 Index over the next twelve months, 𝑟𝑡+1. 𝑥𝑡 denotes an alternative return predictor. Detailed definitions and
the sample period for each variable can be found in Figure 4. 𝑡-statistics, based on Newey-West standard errors with autocorrelation adjustments up to 18 lags, are
provided in parentheses. Constant terms are omitted for brevity.

𝑟𝑡+1

𝑥 = 𝑝𝑑 𝐾𝑃 𝜇𝐹 bm dy tbl lty ntis infl ltr svar
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

𝑑𝑟𝑡 -0.228∗∗∗ -0.130∗∗∗ -0.223∗∗∗ -0.185∗∗∗ -0.228∗∗∗ -0.159∗∗∗ -0.169∗∗∗ -0.151∗∗∗ -0.160∗∗∗ -0.156∗∗∗ -0.160∗∗∗
(0.065) (0.035) (0.076) (0.049) (0.064) (0.035) (0.037) (0.032) (0.035) (0.035) (0.035)

𝑥𝑡 0.141 0.307 -1.571 -0.207 -0.140 -0.387 -0.903 1.524 -7.034∗∗ 0.202 2.885∗∗
(0.117) (0.247) (1.709) (0.357) (0.114) (0.616) (0.730) (1.356) (3.351) (0.166) (1.463)

𝑁 372 372 372 372 372 372 372 372 372 372 372
𝑅2 0.264 0.259 0.259 0.253 0.263 0.251 0.259 0.289 0.269 0.249 0.254

𝑥 = csp ep de dfy dfr tms cay ik SII SVIX 𝑑𝑝𝐶𝑜𝑟𝑟

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

𝑑𝑟𝑡 -0.149∗∗∗ -0.159∗∗∗ -0.157∗∗∗ -0.156∗∗∗ -0.155∗∗∗ -0.160∗∗∗ -0.169∗∗∗ -0.178∗∗∗ -0.150∗∗∗ -0.221∗∗∗ -0.209∗∗∗
(0.033) (0.040) (0.035) (0.035) (0.034) (0.036) (0.047) (0.050) (0.038) (0.045) (0.072)

𝑥𝑡 37.581∗ -0.192 -0.007 -0.282 0.421 -0.578 -0.351 2.796 -0.062∗∗∗ 1.373∗∗ 0.011
(21.626) (1.316) (0.046) (4.930) (0.545) (1.352) (1.034) (10.797) (0.023) (0.644) (0.090)

𝑁 180 372 372 372 372 372 124 124 324 193 210
𝑅2 0.380 0.248 0.248 0.248 0.249 0.250 0.248 0.248 0.408 0.293 0.304
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Table A.14 Return Spanning Test: 𝑑𝑟 and 𝑝𝑑
The table presents the results of the following return spanning test:

𝑟𝑡+1 = 𝛼 + 𝛽1𝑑𝑟𝑡 + 𝛽2𝑝𝑑𝑡 + 𝛾𝑥𝑡 + 𝜖𝑡+1.

The dependent variable is the log return of the S&P 500 Index over the next twelve months, 𝑟𝑡+1. 𝑥𝑡 denotes an alternative return predictor. Detailed definitions and
the sample period for each variable can be found in Figure 4. 𝑡-statistics, based on Newey-West standard errors with autocorrelation adjustments up to 18 lags, are
provided in parentheses. Constant terms are omitted for brevity.

𝑟𝑡+1

𝑥 = 𝐾𝑃 𝜇𝐹 bm dy tbl lty ntis infl ltr svar csp
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

𝑝𝑑𝑡 0.139 0.146 0.139 0.127 0.134 0.121 0.082 0.146 0.148 0.204 0.127
(0.113) (0.273) (0.130) (0.195) (0.127) (0.130) (0.130) (0.114) (0.119) (0.125) (0.146)

𝑑𝑟𝑡 -0.202∗∗∗ -0.227∗∗∗ -0.228∗∗∗ -0.228∗∗∗ -0.226∗∗∗ -0.228∗∗∗ -0.194∗∗∗ -0.235∗∗∗ -0.231∗∗∗ -0.267∗∗∗ -0.211∗∗∗
(0.063) (0.074) (0.068) (0.064) (0.068) (0.067) (0.058) (0.067) (0.066) (0.076) (0.056)

𝑥𝑡 0.299 0.072 -0.013 -0.015 -0.241 -0.699 1.355 -7.215∗ 0.289∗ 5.377∗∗∗ 31.269
(0.261) (3.804) (0.428) (0.159) (0.639) (0.824) (1.368) (3.737) (0.175) (1.831) (21.220)

𝑁 372 372 372 372 372 372 372 372 372 372 180
𝑅2 0.275 0.264 0.264 0.264 0.266 0.271 0.294 0.286 0.267 0.284 0.393

𝑥 = ep de dfy dfr tms cay ik SII SVIX 𝑑𝑝𝐶𝑜𝑟𝑟

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

𝑝𝑑𝑡 0.144 0.182 0.169 0.140 0.143 0.188 0.187 0.097 0.175 0.031
(0.117) (0.151) (0.110) (0.116) (0.118) (0.131) (0.129) (0.139) (0.266) (0.154)

𝑑𝑟𝑡 -0.235∗∗∗ -0.243∗∗∗ -0.240∗∗∗ -0.227∗∗∗ -0.233∗∗∗ -0.270∗∗∗ -0.272∗∗∗ -0.199∗∗∗ -0.286∗∗ -0.215∗∗
(0.073) (0.076) (0.063) (0.064) (0.066) (0.076) (0.074) (0.066) (0.112) (0.084)

𝑥𝑡 -0.343 0.029 2.412 0.358 -0.631 -0.261 1.191 -0.060∗∗∗ 2.042 0.023
(1.492) (0.060) (5.439) (0.489) (1.283) (0.964) (9.805) (0.021) (1.436) (0.084)

𝑁 372 372 372 372 372 124 124 324 193 210
𝑅2 0.265 0.268 0.267 0.266 0.267 0.271 0.271 0.416 0.307 0.305
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Table A.15 Correlations with Other Return Predictors
This table presents the correlations of various alternative return predictors with both 𝑑𝑟𝑡 and 𝑝𝑑𝑡 from 1988 to 2019.
𝜇𝐹 is the filtered demeaned expected return following Binsbergen and Koĳen (2010). KP is a predictive factor
extracted from 100 book-to-market and size portfolios from Kelly and Pruitt (2013). Most alternative predictors are
from Goyal and Welch (2007) that include the default yield spread (dfy), the inflation rate (infl), stock variance (svar),
the cross-section premium (csp, available in 1988-2002), the dividend payout ratio (de), the long-term yield (lty), the
term spread (tms), the T-bill rate (tbl), the default return spread (dfr), the dividend yield (dy, log difference between
current-period dividend and lagged S&P 500 index price), the long-term rate of return (ltr), the earnings-to-price ratio
(ep), the book to market ratio (bm), the investment-to-capital ratio (ik), the net equity expansion ratio (ntis), the percent
equity issuing ratio (eqis), and the consumption-wealth-income ratio (cay). SII is the short interests index from Rapach,
Ringgenberg, and Zhou (2016) (1988-2014). SVIX is an option-implied lower bound of 1-year equity premium from
Martin (2017) (1996-2012). 𝑑𝑝𝐶𝑜𝑟𝑟 is the dividend-price ratio corrected for option-implied expected dividend growth
following Golez (2014) (1994-2011).

𝑑𝑟 𝑝𝑑

bm -0.788 -0.851
cay -0.262 -0.272
csp 0.345 0.428
de -0.245 -0.463
dfr -0.024 0.005
dfy -0.078 -0.273
𝑑𝑟 1.000 0.873
dy -0.879 -0.990
ep -0.558 -0.453
𝑑𝑝𝐶𝑜𝑟𝑟 -0.784 -0.834
ik 0.656 0.637
infl -0.100 -0.074
𝐾𝑃 -0.565 -0.496
ltr -0.000 -0.056
lty -0.368 -0.425
𝜇𝐹 -0.892 -0.967
ntis -0.074 0.075
𝑝𝑑 0.873 1.000
SII 0.047 -0.015
svar 0.149 -0.053
SVIX 0.042 -0.359
tbl -0.175 -0.243
tms -0.255 -0.217
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Table A.16 Time-varying 𝜌𝑧 and Return Predictability
This table presents the results from regressions examining the relationship between return predictability from 𝑑𝑟𝑡 and
the time-varying persistence of the expected cash-flow growth. The dependent variables are the in-sample residuals
from return predictive regressions (𝜀𝑡 ) and the out-of-sample return forecast errors (𝜐𝑡 ). The independent variable is
the time-varying expected cash-flow growth persistence (𝜌̂𝑧,𝑡 ), estimated using three-year rolling windows. 𝑡-statistics
based on Newey-West standard errors with 18 lags are reported in parentheses. The sample period begins in January
1998 when the first out-of-sample forecast is made, and concludes in December 2019.

𝜀𝑡 𝜐𝑡
(1) (2)

Intercept -0.011 -0.046
(-1.127) (-4.076)

𝜌̂𝑧,𝑡 0.556 0.469
(5.143) (4.599)

𝑁 252 252
𝑅2 0.173 0.094
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Figure A.2 Spectrum and Cross-spectrum of 𝑑𝑟 and 𝑝𝑑 (Daily Frequency)
The left panel displays the estimated spectral densities of 𝑑𝑟 , 𝑝𝑑, and the residuals of 𝑑𝑟 from projection onto 𝑝𝑑 (𝜖 𝑝𝑟 ).
The integral of the spectral density represents the variance. The horizontal axis ranges from zero to 𝜋 and is labeled
with the corresponding cycle lengths. The right panel illustrates the cross-spectral density between 𝑑𝑟 and 𝑝𝑑, with
the integral representing the covariance.
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Figure A.3 In-Sample and Out-of-Sample 𝑅2 Wedge between 𝑑𝑟 and Other Return Predictors: Excess
Return
This figure compares annual return predictive 𝑅2 between 𝑑𝑟𝑡 and other commonly studied predictors. The forecast
target is the annual log excess return of the S&P 500 Index. Panels A and B report, respectively, the differences in
in-sample (IS) and out-of-sample (OOS) 𝑅2 between 𝑑𝑟 and an alternative predictor. A positive value signifies that 𝑑𝑟
has a stronger predictive power than the alternative within the same sample period. Most predictors are from Goyal
and Welch (2007) and include the price-dividend ratio (pd), the default yield spread (dfy), the inflation rate (infl), stock
variance (svar), the cross-section premium (csp, available in 1988-2002), the dividend payout ratio (de), the long-term
yield (lty), the term spread (tms), the T-bill rate (tbl), the default return spread (dfr), the dividend yield (dy), the long-
term rate of return (ltr), the earnings-to-price ratio (ep), the book to market ratio (bm), the investment-to-capital ratio
(ik), the net equity expansion ratio (ntis), the percent equity issuing ratio (eqis), and the consumption-wealth-income
ratio (cay). KP is the predictive factor extracted from 100 book-to-market and size portfolios from Kelly and Pruitt
(2013). 𝑑𝑝𝐶𝑜𝑟𝑟 is the dividend-price ratio corrected for option-implied dividend growth in Golez (2014) (available in
1994-2011). 𝜇𝐹 is the filtered series for expected returns following Binsbergen and Koĳen (2010). SII is the short
interests index from Rapach, Ringgenberg, and Zhou (2016) (available in 1988-2014). SVIX is an option-implied
lower bound of annual equity premium in Martin (2017) (available in 1996-2012).
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Figure A.4 In-Sample and Out-of-Sample 𝑅2 Wedge between 𝑑𝑟 and Other Return Predictors: Fama-
French Market Return
This figure compares annual return predictive 𝑅2 between 𝑑𝑟𝑡 and other commonly studied predictors. The forecast
target is the annual log market return from Fama-French. Panels A and B report, respectively, the differences in
in-sample (IS) and out-of-sample (OOS) 𝑅2 between 𝑑𝑟 and an alternative predictor. A positive value signifies that 𝑑𝑟
has a stronger predictive power than the alternative within the same sample period. Most predictors are from Goyal
and Welch (2007) and include the price-dividend ratio (pd), the default yield spread (dfy), the inflation rate (infl), stock
variance (svar), the cross-section premium (csp, available in 1988-2002), the dividend payout ratio (de), the long-term
yield (lty), the term spread (tms), the T-bill rate (tbl), the default return spread (dfr), the dividend yield (dy), the long-
term rate of return (ltr), the earnings-to-price ratio (ep), the book to market ratio (bm), the investment-to-capital ratio
(ik), the net equity expansion ratio (ntis), the percent equity issuing ratio (eqis), and the consumption-wealth-income
ratio (cay). KP is the predictive factor extracted from 100 book-to-market and size portfolios from Kelly and Pruitt
(2013). 𝑑𝑝𝐶𝑜𝑟𝑟 is the dividend-price ratio corrected for option-implied dividend growth in Golez (2014) (available in
1994-2011). 𝜇𝐹 is the filtered series for expected returns following Binsbergen and Koĳen (2010). SII is the short
interests index from Rapach, Ringgenberg, and Zhou (2016) (available in 1988-2014). SVIX is an option-implied
lower bound of annual equity premium in Martin (2017) (available in 1996-2012).
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Figure A.5 In-Sample and Out-of-Sample 𝑅2 Wedge between 𝑑𝑟 and Other Return Predictors: Fama-
French Market Excess Return
This figure compares annual return predictive 𝑅2 between 𝑑𝑟𝑡 and other commonly studied predictors. The forecast
target is the annual log market excess return from Fama-French. Panels A and B report, respectively, the differences
in in-sample (IS) and out-of-sample (OOS) 𝑅2 between 𝑑𝑟 and an alternative predictor. A positive value signifies that
𝑑𝑟 has a stronger predictive power than the alternative within the same sample period. Most predictors are from Goyal
and Welch (2007) and include the price-dividend ratio (pd), the default yield spread (dfy), the inflation rate (infl), stock
variance (svar), the cross-section premium (csp, available in 1988-2002), the dividend payout ratio (de), the long-term
yield (lty), the term spread (tms), the T-bill rate (tbl), the default return spread (dfr), the dividend yield (dy), the long-
term rate of return (ltr), the earnings-to-price ratio (ep), the book to market ratio (bm), the investment-to-capital ratio
(ik), the net equity expansion ratio (ntis), the percent equity issuing ratio (eqis), and the consumption-wealth-income
ratio (cay). KP is the predictive factor extracted from 100 book-to-market and size portfolios from Kelly and Pruitt
(2013). 𝑑𝑝𝐶𝑜𝑟𝑟 is the dividend-price ratio corrected for option-implied dividend growth in Golez (2014) (available in
1994-2011). 𝜇𝐹 is the filtered series for expected returns following Binsbergen and Koĳen (2010). SII is the short
interests index from Rapach, Ringgenberg, and Zhou (2016) (available in 1988-2014). SVIX is an option-implied
lower bound of annual equity premium in Martin (2017) (available in 1996-2012).
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Figure A.6 Out-of-sample 𝑅2 and model complexity
This figure presents the out-of-sample (OOS) 𝑅2 against the degree of model complexity for various values of the
ridge shrinkage parameter, using the machine learning method developed by Kelly, Malamud, and Zhou (2024). The
analysis is based on ridge regressions and forecasts the annual log return of the S&P index. The initial OOS prediction
starts in January 1998, and the OOS 𝑅2 is calculated following Goyal and Welch (2007). The machine learning models
employ a 12-month training window, 𝛾 = 2, a Random Fourier Features (RFF) count 𝑃 ranging from 2 to 12,000, and
the shrinkage parameter ranging from 0.001 to 1000. The blue dashed line indicates the OOS 𝑅2 obtained from the
standard univariate predictive regression using 𝑑𝑟 as the predictor.
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Figure A.7 Rolling Estimates of Expected Growth Persistence and Out-of-sample Return Prediction
Errors
This figure plots the rolling estimates of the autoregressive coefficient of expected cash flow growth, 𝜌̂𝑧,𝑡 , and the
out-of-sample return prediction errors using the slope of S&P 500 valuation term structure (𝑑𝑟𝑡 ) as the predictor.
𝜌̂𝑧,𝑡 is estimated using analyst forecasts of S&P 500 aggregate earnings in three-year rolling windows. The initial
out-of-sample forecast begins in 1998. The graph also reports the correlation between these two time series. The
monthly sample period spans from January 1998 to December 2019.
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Figure A.8 Out-of-sample 𝑅2 by Sample Split Dates
This figure presents the out-of-sample 𝑅2 for annual return predictions as specified in equation (17), using various
sample split dates. The first out-of-sample split date is January 1993, and the last date is June 2015. We calculate the
out-of-sample 𝑅2 from univariate regressions with 𝑑𝑟 and 𝑝𝑑 as predictors, respectively. i
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B. IGA earnings growth between years 1 and 2: Δ𝑒𝑡+2
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C. IGA earnings growth between years 2 and 3: Δ𝑒𝑡+3

Figure A.9 𝑅2 from Earnings Growth Predictive Regressions at Various Horizons with Bootstrapped
Confidence Interval
This figure presents the in-sample 𝑅2 for predicting annual S&P 500 Index earnings growth across different horizons
using various predictors. The dependent variables are S&P earnings growth, sourced from IGA, for Year 1, Years 1
to 2, and Years 2 to 3, displayed in Panels A, B, and C, respectively. The predictors used include the price-dividend
ratio (𝑝𝑑), one-year earnings growth forecast (𝑆𝑇𝐺 ≡ E𝐴𝑡 (Δ𝑒𝑡+1)), long-term earnings growth forecast (𝐿𝑇𝐺), and
various combinations of 𝑝𝑑, 𝑠0.5 (price-dividend ratio of a six-month strip), 𝑠1 (price-dividend ratio of a one-year
strip), and 𝑠1+ (price-dividend ratio of dividends beyond one year). Each round dot represents the in-sample 𝑅2 with a
95% bootstrapped confidence interval. A.33


